A note on the complexity of backward induction games

Jakub Szymanik

RAIN @ NASSLLI 2012

Outline

Introduction

Computational complexity

Complexity of a single trial

Outlook

Outline

Introduction

Computational complexity

Complexity of a single trial

Outlook

Logic and CogSci?

Question

What can logic do for CogSci, and vice versa?

Marr's levels of explanation

1. computational level:

▶ problems that a cognitive ability has to overcome

Marr's levels of explanation

1. computational level:

- ▶ problems that a cognitive ability has to overcome
- 2. algorithmic level:
 - ▶ the algorithms that may be used to achieve a solution

Marr's levels of explanation

1. computational level:

- problems that a cognitive ability has to overcome
- 2. algorithmic level:
 - ▶ the algorithms that may be used to achieve a solution
- 3. implementation level:
 - how this is actually done in neural activity

Marr, Vision: a computational investigation into the human representation and processing of the visual information, 1983

Between computational and algorithmic level

Claim

Logic can inform us about inherent properties of the problem.

Level 1,5 Complexity level:

complexity of the possible algorithms

Between computational and algorithmic level

Claim

Logic can inform us about inherent properties of the problem.

Level 1,5 Complexity level:

complexity of the possible algorithms

Example

The shorter the proof the easier the problem.

Geurts, Reasoning with quantifiers, 2003

Gierasimczuk et al., Logical and psychological analysis of deductive mastermind, 2012

Between computational and algorithmic level

Claim

Logic can inform us about inherent properties of the problem.

Level 1,5 Complexity level:

complexity of the possible algorithms

Example

The shorter the proof the easier the problem.

Geurts, Reasoning with quantifiers, 2003

Gierasimczuk et al., Logical and psychological analysis of deductive mastermind, 2012

Example

The easier the algorithm the easier quantifier verification.

Szymanik & Zajenkowski, Comprehension of simple quantifiers, 2010 More: 13.45 @ TLS

Logic and social cognition

1. Higher-order reasonings: 'I believe that Ann knows that Ben thinks \ldots '

- 1. Higher-order reasonings: 'I believe that Ann knows that Ben thinks \ldots '
- 2. Interacts with game-theory

Logic and social cognition

- 1. Higher-order reasonings: 'I believe that Ann knows that Ben thinks'
- 2. Interacts with game-theory
- 3. Backward induction: tells us which sequence of actions will be chosen by agents that want to maximize their own payoffs, assuming common knowledge of rationality.

Logic and social cognition

- 1. Higher-order reasonings: 'I believe that Ann knows that Ben thinks'
- 2. Interacts with game-theory
- 3. Backward induction: tells us which sequence of actions will be chosen by agents that want to maximize their own payoffs, assuming common knowledge of rationality.
- 4. BI games have been extensively studied in psychology

Matrix game

ī.

Hedden & Zhang What do you think I think you think?, 2002

Marble Drop Game

MDG performance ...

MDG performance gets better

BI algorithm

At the end of the game, players have their values marked. At the intermediate stages, once all follow-up stages are marked, the player to move gets her maximal value that she can reach, while the other, non-active player gets his value in that stage.

Project

- 1. What is the complexity of the computational problem?
- 2. What makes certain MDG trials harder than others?

Project

- 1. What is the complexity of the computational problem?
- 2. What makes certain MDG trials harder than others?
- 3. What is the connection with logic?
- 4. What is the connection with psychology?

Project

- 1. What is the complexity of the computational problem?
- 2. What makes certain MDG trials harder than others?
- 3. What is the connection with logic?
- 4. What is the connection with psychology?
- $\hookrightarrow \text{human reasoning strategies}$

Outline

Introduction

Computational complexity

Complexity of a single trial

Outlook

BI is computable in polynomial time

▶ Breadth-first search.

BI is computable in polynomial time

Breadth-first search.

• Therefore, $BI \in PTIME$.

Question Is BI PTIME-complete?

Question

Descriptive complexity analysis of BI?

Van Benthem & Gheerbrant, Game solution, epistemic dynamics and fixed-point logics, 2010

Preliminaries: reachability

Question

Is t reachable from s?

Preliminaries: reachability

Question

Is t reachable from s?

Theorem Reachability is NL-complete.

Alternating graphs

Definition

Let an alternating graph G = (V, E, A, s, t) be a directed graph whose vertices, V, are labeled universal or existential. $A \subseteq V$ is the set of universal vertices. $E \subseteq V \times V$ is the edge relation.

Reachability on alternation graphs

Definition

Let G = (V, E, A, s, t) be an alternating graph. We say that t is reachable from s iff $P_a^G(s, t)$, where $P_a^G(x, y)$ is the smallest relation on vertices of G satisfying:

- 1. $P_a^G(x, x)$
- 2. If x is existential and $P_a^G(z, y)$ holds for some edge (x, z) then $P_a^G(x, y)$.
- 3. If x is universal, there is at least one edge leaving x, and $P_a^G(z, y)$ holds for all edges (x, z) then $P_a^G(x, y)$.

Is there an alternating path from s to t?

Reachability on alternating graphs is PTIME-complete

Definition $REACH_a = \{G|P_a^G(s,t)\}$

Theorem $REACH_a$ is PTIME-complete via first-order reductions.

Corollary on competitive games

Observation

Given G and s, $REACH_a$ intuitively corresponds to the question: 'Is s a winning position for the first player in the competitive game G?'

Corollary

BI for competitive games is PTIME-complete.

Extensive form game graphs

Definition

A two player game $G = (V, E, V_1, V_2, f_1, f_2, s, t)$ is a graph, where V is the set of nodes, $E \subseteq V \times V$ is the edge relation (available moves). For i = 1, 2, $V_i \subseteq V$ is the set of nodes controlled by Player *i*, and $V_1 \cap V_2 = \emptyset$. Finally, $f_i : V \longrightarrow \mathbb{N}$ assigns pay-offs for Player *i*.

Definition

Let G be a two player game. We define the backward induction accessibility relation on G. Let $P_{bi}^G(x, y)$ be the smallest relation on vertices of G such that:

- 1. $P_{bi}^{G}(x, x)$
- 2. Take i = 1, 2. Assume that $x \in V_i$ and $P_{bi}^G(z, y)$. If the following two conditions hold, then also $P_{bi}^G(x, y)$ holds:
 - 2.1 E(x, z); 2.2 there is no w, v such that E(x, w), $P_{bi}^G(w, v)$, and $f_i(v) > f_i(y)$.

And now, is s Bi-accessible from t?

BI decision problem

Definition $REACH_{bi} = \{G|P_{bi}^G(s,t)\}$

Theorem $REACH_{bi}$ is PTIME-complete via first-order reductions.

▶ Cobham-Edmonds thesis: PTIME = tractable

- ▶ Cobham-Edmonds thesis: PTIME = tractable
- ▶ PTIME-complete problems are the hardest among PTIME.

- ▶ Cobham-Edmonds thesis: PTIME = tractable
- ▶ PTIME-complete problems are the hardest among PTIME.
- ▶ Difficult to effectively parallelize.

- ▶ Cobham-Edmonds thesis: PTIME = tractable
- ▶ PTIME-complete problems are the hardest among PTIME.
- ▶ Difficult to effectively parallelize.
- ▶ Difficult to solve in limited space.

Outline

Introduction

Computational complexity

Complexity of a single trial

Outlook

Marble Drop Game

MDG decision trees

MDG decision trees

Definition

G is generic, if for each player, distinct end nodes have different pay-offs.

Question

Question

How to approximate the complexity of a single instance?

Alternation type

Definition

Let's assume that the players strictly alternate in the game. Then:

- 1. In a Λ_1^i tree all the nodes are controlled by Player *i*.
- 2. In a Λ_k^i tree, k-alternations, starts with an *i*th Player node.

Alternation type

Definition

Let's assume that the players strictly alternate in the game. Then:

- 1. In a Λ_1^i tree all the nodes are controlled by Player *i*.
- 2. In a Λ_k^i tree, k-alternations, starts with an *i*th Player node.

Figure: Λ_3^1 -tree

Alternation hierarchy

Conjecture

For every $i, j \in \{1, 2\}$, the computational complexity of $REACH_a$ for all Λ_{n+1}^i graphs is greater than for all Λ_n^j graphs, and all Λ_n^i graphs are of the same complexity.

Alternation hierarchy

Conjecture

For every $i, j \in \{1, 2\}$, the computational complexity of $REACH_a$ for all Λ_{n+1}^i graphs is greater than for all Λ_n^j graphs, and all Λ_n^i graphs are of the same complexity.

 \hookrightarrow corresponds to logarithmic hierarchy for the competitive case

To explain eye-tracking data: forward induction with backward reasoning

To explain eye-tracking data: forward induction with backward reasoning

Definition

If T is a generic game tree with the root node controlled by Player 1 (2) and n is the highest pay-off for Player 1 (2), then T^- is the minimal subtree of T containing the root node and the node with pay-off n for Player 1 (2).

 Λ_3^1 trees

Figure: Two Λ_3^1 trees.

T^{-} -example

Figure: Λ_1^1 tree and Λ_3^1 tree

Conjecture

Let us take two MDG trials T_1 and T_2 . T_1 is easier than T_2 if and only if T_1^- is lower in the tree alternation hierarchy than T_2^- .

Conjecture

Let us take two MDG trials T_1 and T_2 . T_1 is easier than T_2 if and only if T_1^- is lower in the tree alternation hierarchy than T_2^- .

 \hookrightarrow to be checked with the eye-tracking data

Outline

Introduction

Computational complexity

Complexity of a single trial

Outlook

▶ Describing agents' internal reasoning.

- ▶ Describing agents' internal reasoning.
- ▶ Define modal/alternation depth of formulas.

- ▶ Describing agents' internal reasoning.
- Define modal/alternation depth of formulas.
- Show correspondence with Λ_n^i -hierarchy.

- Describing agents' internal reasoning.
- ▶ Define modal/alternation depth of formulas.
- Show correspondence with Λ_n^i -hierarchy.
- Build proof-system.

- Describing agents' internal reasoning.
- ▶ Define modal/alternation depth of formulas.
- ▶ Show correspondence with Λ_n^i -hierarchy.
- Build proof-system.
- ▶ Define proof-depth that corresponds to the reasoning difficulty.

Thanks!

Example

A proof:

- 1. $turn_2 \wedge \langle 2 \rangle (u_2 = 0 \wedge u_1 = 2) \wedge \langle 2 \rangle (u_2 = 2 \wedge u_1 = 1) \wedge (2 > 1)$ (premise)
- 2. $turn_2 \wedge \langle 2 \rangle (u_2 = -1 \wedge u_1 = -1) \wedge \langle 2 \rangle (u_2 = 1 \wedge u_1 = 4) \wedge (2 > 1)$ (premise)
- 3. $(u_2 = 2 \land u_1 = 1)$ (from 1)
- 4. $(u_2 = 1 \land u_1 = 4)$ (from 2)
- 5. $(u_1 = 1 \land u_2 = 2)$ (from 3)
- 6. $(u_1 = 4 \land u_2 = 1)$ (from 4)
- 7. $turn_1 \wedge \langle 1 \rangle (u_1 = 1 \wedge u_2 = 2) \wedge \langle 2 \rangle ((u_1 = 4 \wedge u_2 = 1) \wedge (4 > 1) \text{ (from 5, 6)}$

(日) (四) (日) (日) (日)

8. $(u_1 = 4 \land u_2 = 1)$ (from 2) (from 7)