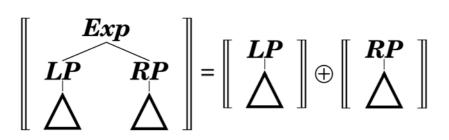
Intensionality

T. E. Zimmermann, Goethe University, Frankfurt, Germany

1 Holos in informa nattarns	
 1. <u>Holes in inference patterns</u> <u>Terms and identity</u> 	
(1a) 31 is prime.	$\varphi[31] [= P(\underline{31})]$
The number of persons in this room is 31.	
$\therefore \qquad \text{The number of persons in this room is prime.}$	$\varphi[n] [= P(\underline{n})]$
	+toit - (<u>5</u>)
(b) It is fact of elementary arithmetic that 31 prime.	
The number of persons in this room is 31.	
\therefore It is fact of elementary arithmetic that the number of pers	ons in this room is prime.
(2a) John's salary is higher than Mary's.	$\mathbf{\varphi}[j,\underline{m}] [= s(j) > s(m)]$
John is the dean.	$\psi(j,\underline{m}) \models s(j) > s(m) = d$
Mary is the vice dean.	j = a m = v
\therefore The dean's salary is higher than the vice dean's.	$\phi[\underline{d},\underline{v}]$
	+ L <u>eot</u> J
(b) Bill knows that the dean's salary is higher than the vice de	ean's.
John is the dean.	
<u>Mary is the vice dean.</u>	
: Bill knows that John's salary is higher than Mary's.	
<u>Problems with existential quantification</u>	
(3a) Urs is a Swiss millionaire.	$\varphi[M] [= S(u) \& \underline{M}(u)]$
All millionaires admire Scrooge McDuck.	$(\forall x) [M(x) \rightarrow A(x)]$
[Only millionaires admire Scrooge McDuck.]	$(\forall x) [A(x) \rightarrow M(x)]$
Urs is a Swiss admirer of Scrooge McDuck.	$\varphi[A] [= S(u) \& A(u)]$
Urs is an alleged millionaire.	
All millionaires admire Scrooge McDuck.	
<u>Only millionaires admire Scrooge McDuck.</u>	
☆ Kim is an alleged admirer of Scrooge McDuck.	
(4a) Paul is wearing a pink shirt with green sleeves.	111
All pink shirts with green sleeves have striped collars and	-
[Only pink shirts with green sleeves have striped collars a	_
• Paul is wearing a shirt with striped collars and gold button	ns.
(b) Paul is looking for a pink shirt with green sleeves.	
All pink shirts with green sleeves have striped collars and	gold buttons.
Only pink shirts with green sleeves have striped collars ar	
• Paul is looking for a shirt with striped collars and gold but	

- (5a) Susan is entering a restaurant on Main Street. <u>The only restaurants on Main Street are La Gourmande and Le Gourmet.</u>
- \therefore Susan is entering La Gourmande, or [Susan is entering] Le Gourmet.
- (b) Susan is looking for a restaurant on Main Street. <u>The only restaurants on Main Street are La Gourmande and Le Gourmet.</u>
- \because Susan is looking for La Gourmande, or [Susan is looking for] Le Gourmet.
- (6a) <u>Paul is wearing a pink shirt with green sleeves.</u>
 ∴ There are pink shirts with green sleeves.
- (b) <u>Paul is looking for a pink shirt with green sleeves.</u>
- \odot $\;$ There are pink shirts with green sleeves.
- (7a) <u>There have never been any pictures of Lily.</u>
 ∴ It is not true that Pete showed Roger a picture of Lily.
- (b) <u>There have never been any pictures of Lily.</u>
 ∴ It is not true that Pete owed Roger a picture of Lily.
- 2. <u>Extensions</u>

<u>Compositionality</u>


$Substitution\ Principle$

If two non-sentential expressions of the same category have the same meaning, either may replace the other in all <u>positions</u> within any sentence without thereby affecting the truth conditions of that sentence.

Principle of Compositionality

The meaning of a complex expression functionally depends on the meanings of its immediate <u>parts</u> and the way in which they are combined:

(8)

- <u>Meaning as communicative function</u>
- *Extension*: [contribution to] reference
- Intension: [contribution to] informational content
- ...

Basic extensions (9a)**[Austin]** = Austin **[***proper name* **]** = bearer (b) **[[the capital of Texas]]** = Austin **[***definite description* **]** = descriptee $[[city]] = \{London, Paris, Rome, Austin, Frankfurt,...\} = \{x \mid x \text{ is a city}\}$ (c) **[***count noun***]** = set of representatives (d) \llbracket **snore** $\rrbracket = \{x \mid x \text{ snores}\}$ **[***intransitive verb***]** = set of satisfiers $\llbracket \mathbf{meet} \rrbracket = \{(x,y) \mid x \text{ meets } y\}$ (e) **[***transitive verb* **]** = set of satisfier pairs $[show] = \{(x,y,z) \mid x \text{ shows } y \text{ to } z\}$ (**f**) **[***ditransitive verb***]** = set of satisfier triples **[shows Joe]** = { $(x,y) \mid x \text{ shows } y \text{ to Joe}$ } **[**2-place predicate **]** = set of satisfier pairs (g) **[shows Joe the Vatican]** = {(x) | x shows the Vatican to Joe} (h) $\{x \mid x \text{ shows the Vatican to Joe}\}$ **[***1-place predicate*] = set of satisfiers = (A) Parallelism between valency and type of extension Frege (1891)

The extension of an *n*-place predicate is a set of *n*-tuples.

[Benny shows Angie the Vatican] = {() | Benny shows the Vatican to Angie} E.g.

the set of objects of the form '()' such that Benny shows the Vatican to Angie, i.e.: **[** Benny shows Angie the Vatican **]** = $\begin{cases} \{()\}, \text{ if Benny does show the Vatican to Angie} \\ \emptyset \text{ otherwise} \end{cases}$

NB: () =
$$\emptyset$$
 = 0; hence {()} = { \emptyset } = {0} = 1!

Frege's Generalization (F

Frege (1892)

The extension of a sentence **S** is its truth value, i.e. 1 if **S** is true and 0 if **S** is false.

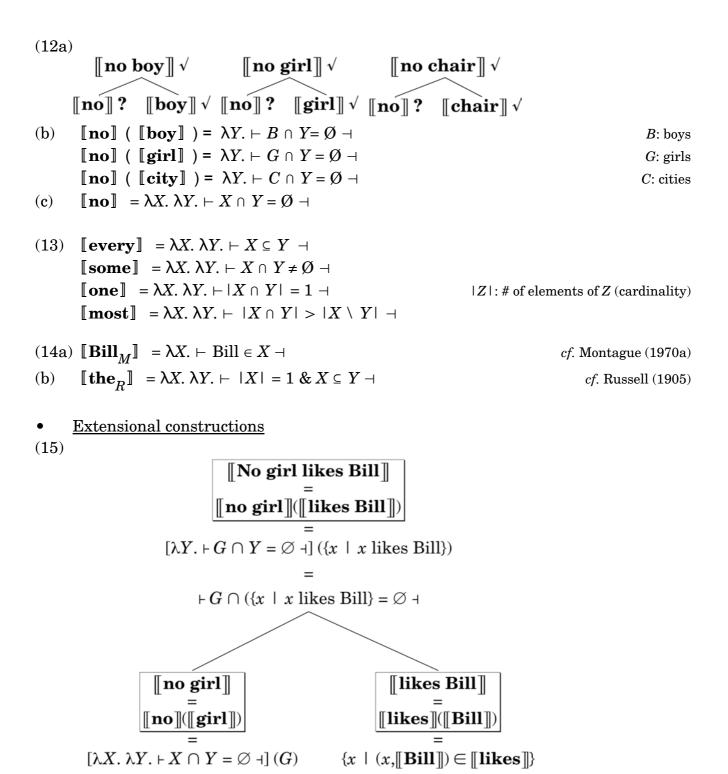
(10a) From: ... to:

$$\begin{bmatrix} Exp \end{bmatrix} \checkmark \qquad \begin{bmatrix} Exp \end{bmatrix} \checkmark$$

$$\begin{bmatrix} LP \end{bmatrix} ? \quad \begin{bmatrix} RP \end{bmatrix} \lor \qquad \begin{bmatrix} LP \end{bmatrix} \checkmark \quad \begin{bmatrix} RP \end{bmatrix} \checkmark$$
(b)
$$\begin{bmatrix} LP \end{bmatrix} (\quad \begin{bmatrix} RP \end{bmatrix}) = \quad \begin{bmatrix} Exp \end{bmatrix}$$

(c)
$$\llbracket LP \rrbracket = \{ (\llbracket RP \rrbracket, \llbracket Exp \rrbracket) \mid Exp = LP + RP \}$$

(11a)


(c)

 $[[Nobody sleeps]] \checkmark [[Nobody talks]] \checkmark [[Nobody listens]] \checkmark$ $[nobody]? [sleeps] \lor [nobody]? [talks] \lor [nobody]? [listens] \lor$ [nobody] ([sleeps]) = $[nobody sleeps] \Rightarrow [nobody]$ (S) = 1 (b) S: sleepers [nobody] ([talks]) = [nobody talks] $\Rightarrow [[nobody]] (T) = 0$ T: talkers $[nobody] ([listens]) = [nobody listens] \Rightarrow [nobody] (L) = 1$ L: hearers $[nobody] = \{(S,1), (T,0), (L,1), ...\}$ ~: bla) pradianta extension}

=
$$\{(Y, \vdash \| person \| \cap Y = \emptyset \dashv) \mid Y \text{ is a (possible) predicate e} \}$$

$$= \lambda Y \vdash [[\mathbf{person}]] \cap Y = \emptyset \dashv$$

 $NB:\vdash \ldots \dashv :=$ the truth value that is 1 iff ...

4

=

 $\{x \mid x \text{ likes Bill}\}$

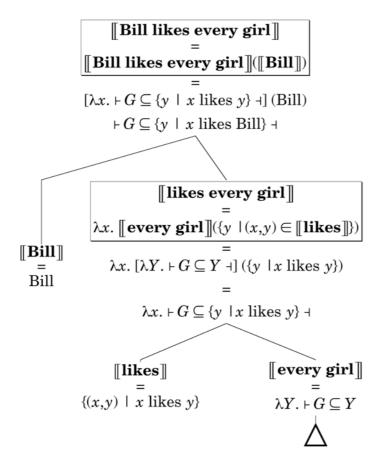
Bill

= Bill

[likes]

 $\{(x,y) \mid x \text{ likes } y\}$

=


 $[\lambda Y + G \cap Y = \emptyset +]$

[[girl]]

G

no

 λX . λY . $\vdash X \cap Y = \emptyset \dashv$

• <u>Extensional types</u>

(17a) $A [\subseteq U] \simeq \lambda x. \vdash x \in A \dashv$

(16)

U: domain of individuals characteristic function (of A rel. to U)

(b) $R \ [\subseteq U^2] \simeq \lambda x. \ \lambda y. \vdash (x,y) \in R \dashv \simeq \lambda y. \ \lambda x. \vdash (x,y) \in R \dashv$

(c) $R [\subseteq U^3] \simeq \lambda z. \lambda y. \lambda x. \vdash (x, y, z) \in R \dashv$

(18) $x \text{ is of type } e \Leftrightarrow x \in U;$ $u \text{ is of type } t \Leftrightarrow u \in \{0,1\};$ $f \text{ is of type } (a,b) \Leftrightarrow f: \{x \mid x \text{ is of type } a\} \rightarrow \{y \mid y \text{ is of type } b\}$

Category	Example	Extension	Type
Name	Austin	Austin [$\in U$]	e
Description	the capital of Texas	Austin [$\in U$]	е
Noun	city	$C [\subseteq U]$	et
1-place predicate	sleep	$S\left[\subseteq oldsymbol{U} ight]$	et
2-place predicate	eat	$\subseteq U \times U$	et
3-place predicate	give	$\subseteq U \times U \times U$	e(et)
Sentence	It's raining	0 [∈ {0,1}]	t
Quantified NP	everybody	λY . $\vdash $ [person] $\subseteq Y \dashv$	(et)t
Determiner	no	$\lambda X. \lambda Y. \vdash X \cap Y = \emptyset \dashv$	(et)((et)t)

3. Intensions

• Logical Space as a model of content

(20a) 4 fair coins are tossed.

- (b) At least one of the 4 tossed coins lands heads up.
- (c) At least one of the 4 tossed coins lands heads down.
- (d) Exactly 2 of the 4 tossed coins land heads up.
- (e) Exactly 2 of the 4 tossed coins land heads down.
- Carnap's Content

Carnap (1947)

The *proposition* expressed by a sentence is the set of possible cases of which that sentence is true.

- (21a) 4 coins were tossed when John coughed.
- (b) 4 coins were tossed and no one coughed.
- IN Wittgenstein's Paradise

Wittgenstein (1921)

characteristic function (of p rel. to W)

All (and only the) maximally specific cases (possible worlds) are members of a set W (aka *Logical Space*).

• <u>From propositions to intensions</u>

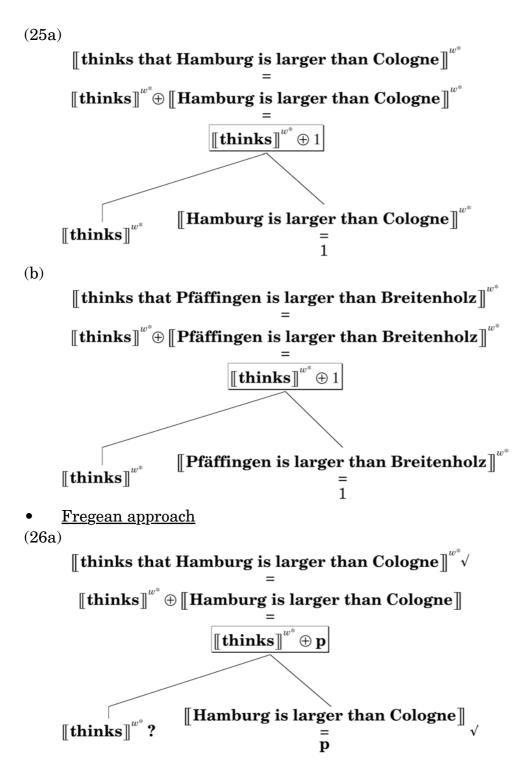
- $(22) \ p \ [\subseteq W] \simeq \lambda w. \vdash w \in p \dashv$
- (23) The *intension of* an expression is its extension relative to Logical Space: $\llbracket E \rrbracket : W \rightarrow \{x \mid x \text{ is of the "appropriate" type}\}$
- <u>Intensional types</u>
- Montagovian types
 - *x* is of type $e \Leftrightarrow x \in U$;
 - $u \text{ is of type } \boldsymbol{t} \Leftrightarrow u {\in} \{0, 1\};$

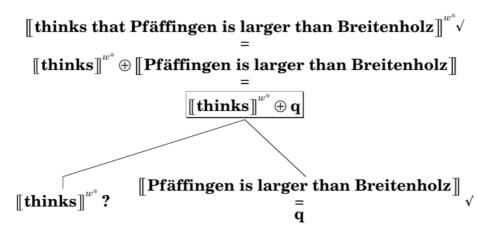
 $f \text{ is of type } (a,b) \Leftrightarrow f: \{x \mid x \text{ is of type } a\} \rightarrow \{y \mid y \text{ is of type } b\}$

 $g \text{ is of type } (\mathbf{s}, c) \Leftrightarrow g \colon \mathbf{W} \to \{y \mid y \text{ is of type } c\}$

Two-sorted types

- *x* is of type $e \Leftrightarrow x \in U$;
- u is of type $t \Leftrightarrow u \in \{0,1\};$
- $w ext{ is of type } s \Leftrightarrow w \in W;$


 $f \text{ is of type } (a,b) \Leftrightarrow f: \{x \mid x \text{ is of type } a\} \rightarrow \{y \mid y \text{ is of type } b\}$


• Notation $\|\mathbf{Exp}\|^{w} = \|\mathbf{Exp}\|(w)$ "Gallin (1975)"

Montague (1970a)

4. Attitude reports

- <u>Substitution failure</u>
- (24) Fritz thinks that Hamburg is larger than Cologne. Hamburg is larger than Cologne.
 <u>Pfäffingen is larger than Breitenholz.</u>
- ·· Fritz thinks that Pfäffingen is larger than Breitenholz.

(27) \llbracket think \rrbracket (w^*)(p) \neq \llbracket think \rrbracket (w^*)(q)

(28) More expressions (of more types)

Category	Example	Extension	Type
Attitude verb	think	$\subseteq \boldsymbol{U} imes \wp \boldsymbol{W}$	(st)(et)
Connective	or	$\lambda u^{t} \cdot \lambda v^{t} \cdot u + v - (uv)$	t(tt)

See Fregean Compositionality

Frege (1892)

The extension of a complex expression functionally depends on the extensions or intensions of its immediate parts and the way in which they are combined:

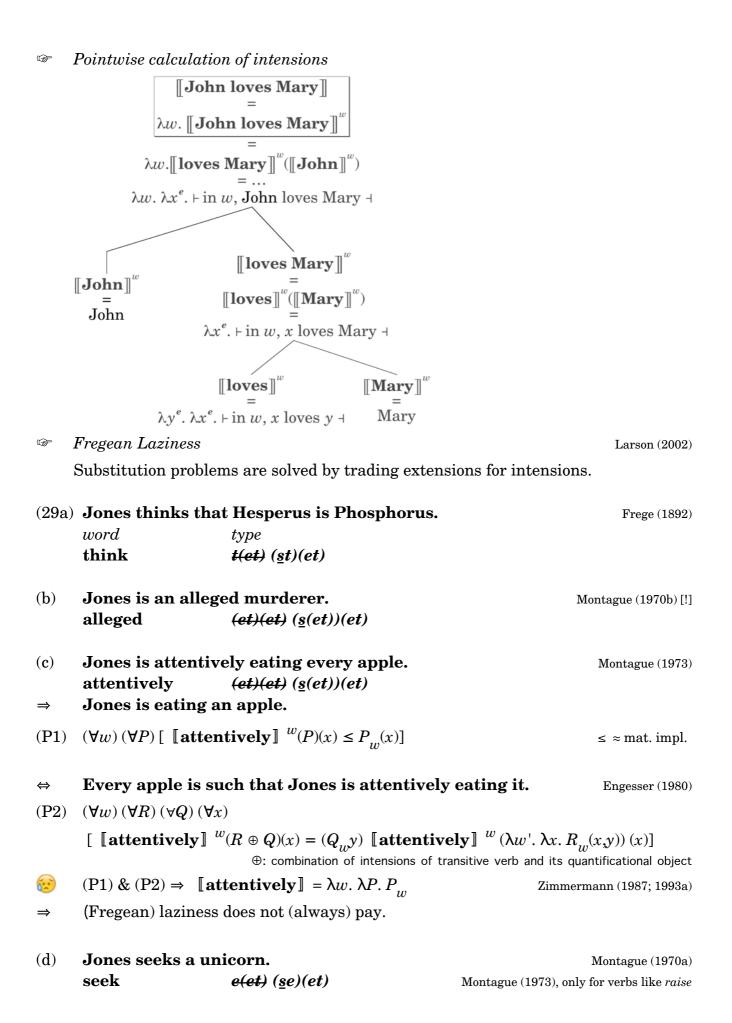
$$\begin{bmatrix} ExtExp\\ \overrightarrow{LP} & \overrightarrow{RP} \end{bmatrix}^{w} = \llbracket LP \rrbracket^{w} \oplus \llbracket RP \rrbracket^{w} \qquad \begin{bmatrix} IntExp\\ \overrightarrow{LP} & \overrightarrow{RP} \end{bmatrix}^{w} = \llbracket LP \rrbracket^{w} \oplus \llbracket RP \rrbracket$$
 [or ...]

... strengthens (by a uniformity condition):

Intensional compositionality

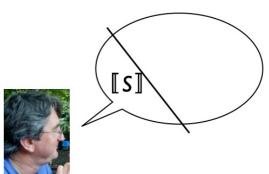
The <u>intension</u> of a complex expression functionally depends on the intensions of its immediate parts and the way in which they are combined:

$$\begin{bmatrix} ArbExp\\ LP RP \end{bmatrix} = \llbracket LP \rrbracket \oplus \llbracket RP \rrbracket$$

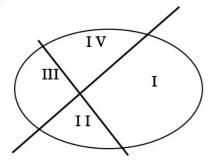

... and gives rise to the:

Distinction between extensional and intensional constructions

A (binary) construction Exp (understood as the family of expressions of the Form $Exp_i = \mathcal{F}(LP_i, RP_i)$, for some syntactic operation \mathcal{F}) is *extensional* iff there is a (binary) function \oplus_F such that, for any world w (and all i):


$$\llbracket \boldsymbol{E} \boldsymbol{x} \boldsymbol{p}_i \rrbracket^w = \llbracket \boldsymbol{L} \boldsymbol{P}_i \rrbracket^w \oplus_{\boldsymbol{\varphi}} \llbracket \boldsymbol{R} \boldsymbol{P}_i \rrbracket^w$$

(b)



- Modelling cognitive states in Logical Space Fritz in *w**...
 - 00'

S = Hamburg is larger than Cologne

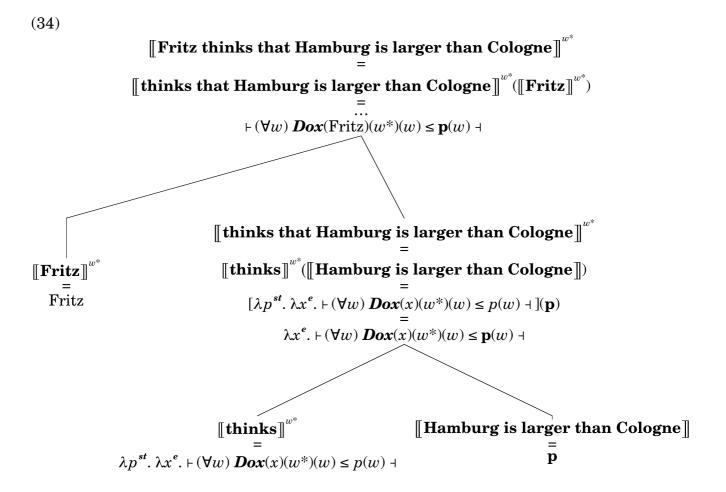
(30)

 $I: \boldsymbol{W} \setminus (\diamondsuit \cup \llbracket \boldsymbol{S} \rrbracket); II: \llbracket \boldsymbol{S} \rrbracket \setminus \diamondsuit; III: \diamondsuit \cap \llbracket \boldsymbol{S} \rrbracket; IV: \diamondsuit \setminus \llbracket \boldsymbol{S} \rrbracket$

[Fritz thinks that Hamburg is larger than Cologne] $(w^*) = 1$ (31)

- $\neg (\exists w \in \Diamond) [S](w) = 0$ ⇔
- $(\forall w \in \Diamond) \ [S] (w) = 1$ ⇔
- (32) \diamondsuit depends on
- attitude subject (Fritz) ...
- world of evaluation: w^* . . .
- lexical meaning of verb: think ...
- $\diamondsuit = \mathbf{Dox}(\operatorname{Fritz})(w^*) \subseteq \mathbf{W}$ \Rightarrow
- **Dox** is of type **e**(**s**(**st**)) ≋

(dependent) accessibility relation

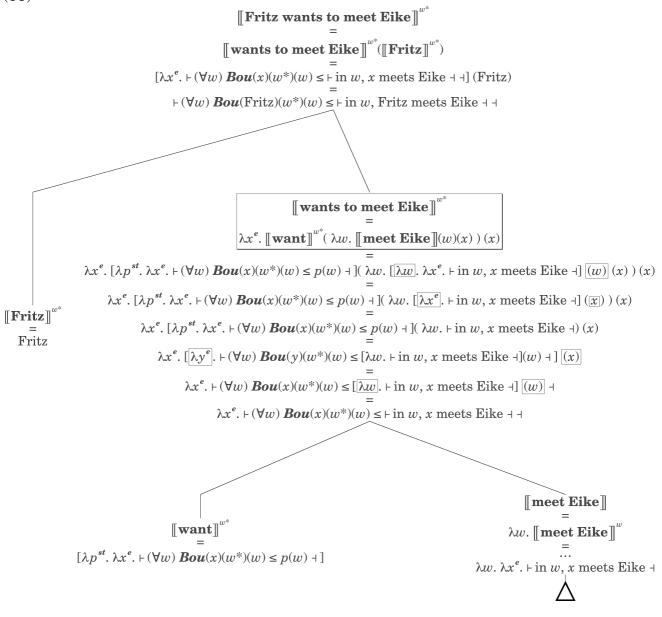

(33a) $\llbracket \mathbf{think} \rrbracket = \lambda w^* \cdot \lambda p^{st} \cdot \lambda x^e \cdot \vdash (\forall w) \mathbf{Dox}(x)(w^*)(w) \le p(w) \dashv$

- $\llbracket \mathbf{know} \rrbracket = \lambda w^* \cdot \lambda p^{st} \cdot \lambda x^e \cdot \vdash (\forall w) \mathbf{Epi}(x)(w^*)(w) \le p(w) \dashv$ (b)
- $\llbracket \mathbf{want} \rrbracket = \lambda w^* \cdot \lambda p^{st} \cdot \lambda x^e \cdot \vdash (\forall w) \mathbf{Bou}(x)(w^*)(w) \le p(w) \dashv$ (c)

••• ...

Hintikka (1969)

 \Leftrightarrow IV = Ø


(35a) [#] Fritz knows that Breitenholz is larger than Pfäffingen.

(b)
$$(\forall w^*) (\forall p^{st}) (\forall x^e) \llbracket \mathbf{know} \rrbracket (w^*)(p)(x) \le p(w^*)$$

(c)
$$(\forall w^*) (\forall x^e) Epi(x)(w^*)(w^*) = 1$$

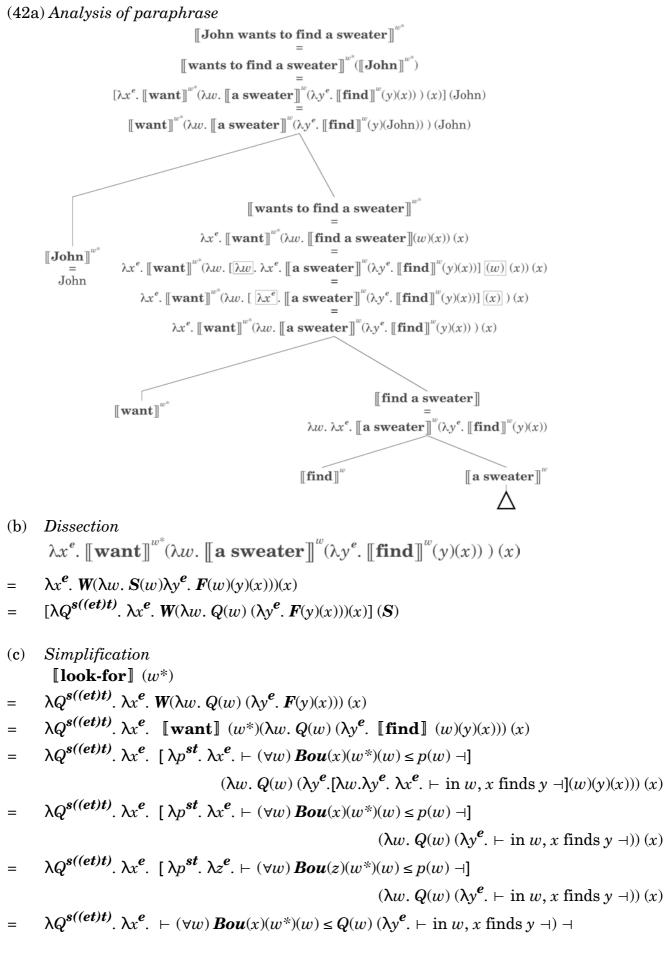
(36a) [#] Fritz knows that Rome is in Italy, but he doesn't think so.

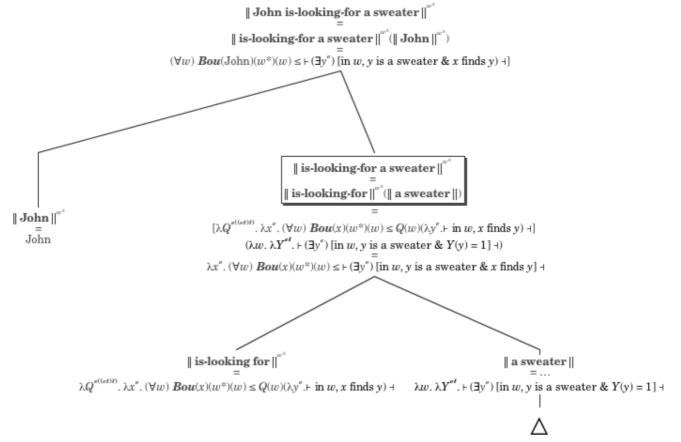
- (b) $(\forall w^*) (\forall p^{st}) (\forall x^e) \llbracket \mathbf{know} \rrbracket (w^*)(p)(x) \leq \llbracket \mathbf{think} \rrbracket (w^*)(p)(x)$
- (c) $(\forall w^*) (\forall w) (\forall x^e) Dox(x)(w^*)(w) \le Epi(x)(w^*)(w)$
- $(37a)\ensuremath{\,^{\ast}}\xspace$ Fritz wants that Fritz meets Eike.
- (b) Fritz wants to meet Eike.
- (c) $\llbracket \mathbf{want} \rrbracket = \lambda w^* \cdot \lambda P^{s(et)} \cdot \lambda x^e \cdot \vdash (\forall w) \mathbf{Bou}(x)(w^*)(w) \le P(w)(x) \dashv$

5. Unspecific Objects

- <u>Paraphrases</u>
- (39a) John is looking for a sweater.
- (b) John wants to find a sweater.

(40a) Mary owes me a horse.


(b) Mary is obliged to give me a horse.


(41a) This horse resembles a unicorn.

(b) This horse could (almost) be a unicorn.

Quine (1956)

• <u>Relational analyses</u>

(43a) John is looking for most unicorns.

- (b) $(\forall w) \mathbf{Bou}(x)(w^*)(w) \le \vdash \text{ in } w, \#(\text{unicorns } x \text{ finds}) > \#(\text{unicorns } x \text{ doesn't find}) \dashv)$
- (c) John wants to find most unicorns.

(44a) John is looking for each unicorn.

- (b) $(\forall w)$ *Bou*(*x*)(*w**)(*w*) $\leq \vdash$ in *w*, John finds each unicorn \dashv)
- (c) John wants to find each unicorn.

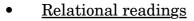
(45a) John is looking for no unicorn.

- (b) $(\forall w)$ *Bou*(*x*)(*w**)(*w*) $\leq \vdash$ in *w*, John doesn't find a unicorn \dashv)
- (c) John wants to find no unicorn.

(46a) An intension Q of type s((et)t) is existential iff

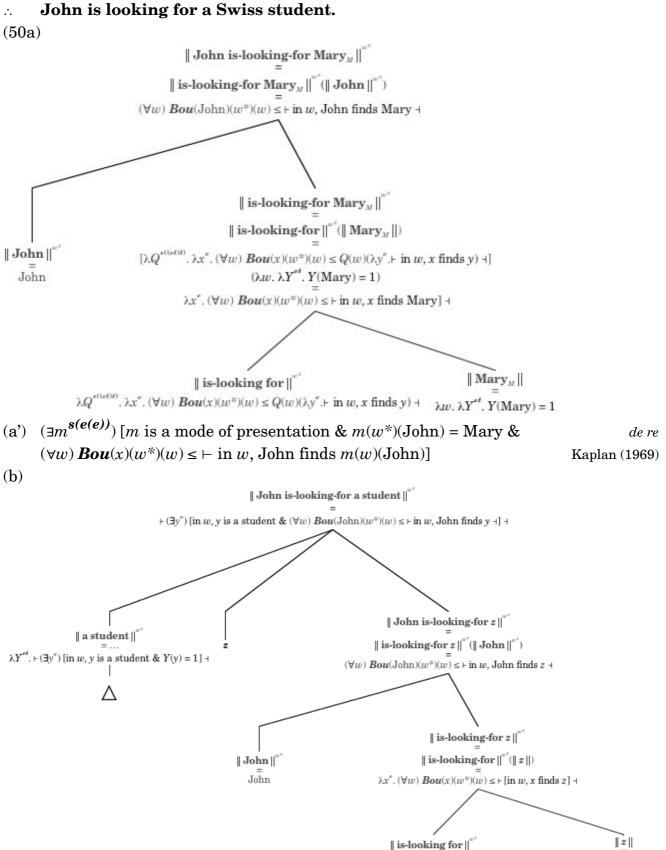
$$Q = \lambda w. \ \lambda Y^{et}. \vdash (\exists x) \left[P(w)(x) = Y(x) = 1 \right] \dashv$$

for some intension *P* of ('property') type *s(et)*.


(b)

Partee (1987)

 $\lambda P^{s(et)}$. λw . λY^{e} . $\vdash (\exists x) [P(w)(x) = Y(x) = 1] \dashv$ is a one-one mapping (called *A*) whose inverse (called *BE*) is:


 $\lambda Q^{s((et)t)}$. $\lambda w. \lambda x^{e}$. $Q(\lambda y^{e}. \vdash x = y \dashv)$.

(47) **[look-for]**
$$(w^*)$$
 Zimmermann (1993b)
= $\lambda P^{s(et)}$. λx^e . $\vdash (\forall w) Bou(x)(w^*)(w) \leq \vdash (\exists y^e)$ in $w, P(y) = 1$ & x finds $y \dashv$

(48) I owe you a horse.

(49) John is looking for Mary. <u>Mary is a Swiss student.</u>

 $\sum_{i=1}^{n} \lambda Q^{x^{((af)f)}} \cdot \lambda x^{e} \cdot (\forall w) \operatorname{Bou}(x)(w^{*})(w) \leq Q(w)(\lambda y^{e} \cdot \mathsf{h} \text{ in } w, x \text{ finds } y) + \lambda w \cdot \lambda Y^{ef} \cdot Y(z) = 1$

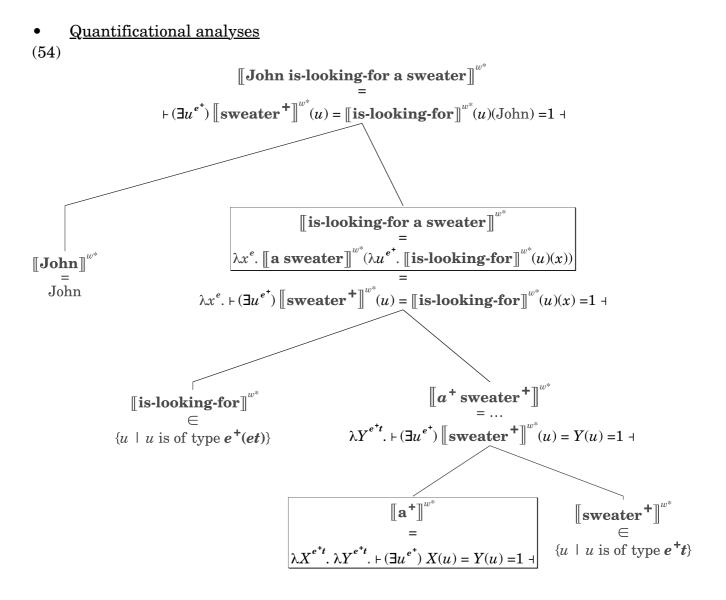
Buridanus (1350)

• <u>More paraphrases</u>

(51a) John is looking for a sweater.

- (b) John wants to find a sweater.
- (c) John is looking for an intentional sweater.

(52a) Mary owes me a horse.


- (b) Mary is obliged to give me a horse.
- (c) Mary owes me an arbitrary horse.

(53a) This horse resembles a unicorn.

- (b) This horse could (almost) be a unicorn.
- (c) This horse resembles a generic unicorn.

(53a) Jones hired an assistant.

- (b) Jones saw to it that someone would become an/his assistant.
- (c) Jones hired a would-be assistant.

(55a) $e^+ = s(et)$

Condoravdi et al. (2001)

- (b) $\llbracket \mathbf{sweater}^+ \rrbracket (w^*) = \lambda P^{\mathbf{s}(\mathbf{e}t)}$. $\vdash (\forall w) (\forall x^\mathbf{e}) P \sqsubseteq \llbracket \mathbf{sweater} \rrbracket \dashv$
- (c) [look-for] (w^*) Zimmermann (2006): 'exact match'
- $= \lambda P^{s(et)} \cdot \lambda x^{e} \cdot \vdash (\forall w) [Bou(x)(w^{*})(w) \leftrightarrow (\exists y^{e}) \text{ in } w, P(y) = 1 \& x \text{ finds } y] \dashv$

 $\underline{\text{Notation}}: P \sqsubseteq Q :\Leftrightarrow (\forall w) \ (\forall x^{e}) \ P(w)(x) \leq Q(w)(x)$

 ${\it sub-concepthood}$

• Monotonicity

(56a) John is a looking for a red sweater.

- ... John is looking for a sweater.
- (b) John is looking for a sweater. Mary is looking for a book.
- \therefore John is looking for something Mary is looking for.

Intersective construal (for simplicity): $[\![red sweater]\!] = [\![sweater]\!] \sqcap [\![red]\!]$ Notation: $P \sqcap Q := \lambda w. \lambda x^e$. P(w)(x) = Q(w)(x) = 1

(57) Relational analyses (with lexical decomposition)

- (a) $(\forall w) \operatorname{Bou}(\operatorname{John})(w^*)(w) \leq \vdash (\exists y^e) [\operatorname{in} w, y \text{ is a sweater & } y \text{ is red & John finds } y] \dashv$
- $\Rightarrow \quad (\forall w) \operatorname{\textit{Bou}}(\operatorname{John})(w^*)(w) \leq \vdash (\exists y^e) [\operatorname{in} w, y \text{ is a sweater & John finds } y] \dashv$
- (b) $[(\forall w) Bou(John)(w^*)(w) \le \vdash (\exists y^e) [in w, y is a sweater & John finds y] \dashv$
- & $(\forall w) \operatorname{\textit{Bou}}(\operatorname{Mary})(w^*)(w) \le \vdash (\exists y^e) [in w, y is a book & Mary finds y] \dashv] \dots$
- quantifier analysis e.g. $Q \equiv \lambda w.\lambda P. P=P$:
- $\dots \Rightarrow (\exists Q^{s((et)t)}) [[look-for]] (w^*)(Q)(Mary) \& [look-for]] (w^*)(Q)(John)]$
- property analysis e.g. $Q \equiv \lambda w.\lambda P. P=P$:
- $\ldots \Rightarrow (\exists P^{s(et)}) [[look-for]] (w^*)(P)(Mary) \& [look-for]] (w^*)(P)(John)]$
- $(58) \ Quantificational \ analysis \ (with \ exact \ match)$
- (a) $(\exists P^{s(et)} \sqsubseteq \llbracket sweater \rrbracket \sqcap \llbracket red \rrbracket)(\forall w) \llbracket Bou(j)(w^*)(w) \leftrightarrow (\exists y^e) \text{ in } w, P(y)=1 \& j \text{ finds } y]$
- $\Rightarrow \quad (\exists P^{s(et)} \sqsubseteq \llbracket sweater \rrbracket) (\forall w) [Bou(j)(w^*)(w) \leftrightarrow (\exists y^e) \text{ in } w, P(y)=1 \& j \text{ finds } y]$
- (b) $[(\exists P^{s(et)} \sqsubseteq \llbracket sweater \rrbracket)(\forall w)[Bou(j)(w^*)(w) \leftrightarrow (\exists y^e) \text{ in } w, P(y)=1 \& j \text{ finds } y]$
- & $(\exists P^{s(et)} \sqsubseteq \llbracket book \rrbracket)(\forall w) [Bou(m)(w^*)(w) \leftrightarrow (\exists y^e) \text{ in } w, P(y)=1 \& m \text{ finds } y]]$
- $\neq > \quad (\exists P^{s(et)})(\forall w)[Bou(m)(w^*)(w) \leftrightarrow (\exists y^e) \text{ in } w, P(y)=1 \& m \text{ finds } y]$

...& [$\textbf{Bou}(j)(w^*)(w) \leftrightarrow (\exists y^{e})$ in w, P(y)=1 & j finds y]

 $\equiv (\exists P^{s(et)}) [[look-for]] (w^*)(P)(Mary) \& [look-for]] (w^*)(P)(John)]$

• <u>Unspecificity</u> \Rightarrow Intensionality?

Rooth (p.c., anno 1991)

(59) Arnim owns a bottle of 1981 Riesling-Sylvaner.
 <u>Riesling-Sylvaner is Müller-Thurgau.</u>
 Arnim owns a bottle of 1981 Müller-Thurgau.

- (60) Arnim owns the bottle that Franzis does not own.
- (a) $[the] (w^*) ([bottle Franzis doesn't own]) (w^*)$

 $(\lambda y^{e}$. **[own**]] $(w^{*})(\lambda Y^{et}. Y(y))(Arnim)$

 \leq $\vdash (\exists y^{e}) [[bottle]] (w^{*})(y) = [lown]] (w^{*})(\lambda Y^{et}. Y(y))(Arnim) = 1] \dashv$

- (b) $[own] (w^*) ([the] (w^*) ([bottle Franzis doesn't own])(w^*))(Arnim)$
- $\leq \quad [[own]] (w^*) ([[the]] (w^*) ([[unicorn]])(w^*)) (Arnim)$

(in given scenario)

• <u>Landscape of intensional verbs</u>

(61)

VERBS OF	EXAMPLES	
Absence	avoid, lack, omit	
Anticipation	allow [*] (for), anticipate, expect, fear, foresee, plan, wait [*] (for)	
Calculation	calculate, compute, derive	
Creation	assemble, bake, build, construct, fabricate, make (these verbs in progressive aspect only)	
Depiction	caricature, draw, imagine, portray, sculpt, show, visualize, write* (about)	
Desire	hope* (for), hunger* (for), lust* (after), prefer, want	
Evaluation	admire, disdain, fear, respect, scorn, worship (verbs whose corresponding noun can fill the gap in the evaluation 'worthy of _' or 'merits_')	
Requirement	cry out* (for), demand, deserve, merit, need, require	
Search	hunt [*] (for), look [*] (for), rummage about [*] (for), scan [*] (for), seek	
Similarity	imitate, be reminiscent* (of), resemble, simulate	
Transaction	buy, order, owe, own, reserve, sell, wager	

Forbes (2006: 50) Schwarz (2006)

(62a) Matt needed some change before the conference.

- (b) Matt was looking for some change before the conference.
- (63a) Matt needs most of the small bills that were in the cash-box.
- (b) Matt is looking for most of the small bills that were in the cash-box.

<u>Existential Impact⁵</u> From x Rs an N infer: There is at least one N.

<u>Extensionality⁶</u> From x Rs an N, Every N is an M, and Every M is an N infer: x Rs an M.

Specificity

From x Rs an N infer: Some (specific) individual is Red by x.

- 5. <u>General topics</u>
- Propositionalism Forbes (2000; 2006); M. Montague (2007) (P) All (linguistic, mental, perceptual, pictorial,...) content is propositional. (Q) All intensional contexts are parts of embedded clauses. Quine (1956) (65a) $[[\text{Hesperus is a planet}]] \neq [[\text{Phosphorus is a planet}]]$ Frege (1892) **[**Hesperus**]** ≠ **[**Phosphorus**]** \Rightarrow non-propositional content (b) The thirsty man wants beer. Meinong (1904): intentional object Jones worships a Greek goddess. R. Montague (1969) [crediting H. Kamp] (c) Lex Luthor fears Superman (but not Clark Kent). (d) Forbes (2000) Horatio believes that things Horatio doesn't believe in exist. (e) Szabó (2003): coherent belief John likes chocolate. (e) ... (partly) explains why ...
- John wants to have chocolate. M. Montague (2007)
- Russellian analysis Russell (1905); Whitehead & Russell (1910); Cresswell (1973)
- (66) Denotations and their types

Category	Example	Type
Name	Austin	е
Description	the capital of Texas	(e(st))(st)
Noun	city	e(st)
1-place predicate	sleep	e(st)
2-place predicate	eat	<i>e(e(st))</i>
3-place predicate	give	<i>e(e(e(st)))</i>
Sentence	It's raining	st
Quantified NP	everybody	(e(st))(st)
Determiner	no	(e(st))((e(st))(st)))
Attitude verb	think	(st)(et)
Connective	or	(st)((st)(st))

(67) How to Russell a Frege-Church

- (a) R [[the capital of Texas is larger than Breitenholz]])
- = R([is larger than]) R([Breitenholz]) (R([the capital of Texas]))

Kaplan (1975)

- (b) R([[the capital of Texas]])= λx^{e} . $\lambda w. x =$ [[the capital of Texas]] (w)
- (c) $R([[Breitenholz]]) = \lambda x^{e}$. $\lambda w. x = [[Breitenholz]] (w) [= \lambda x^{e}$. $\lambda w. x = Breitenholz]$
- (d) R [[is larger than]])
- $= \lambda P^{e} \cdot \lambda Q^{e} \cdot \lambda w \cdot \vdash (\forall x) (\forall y) P(x)(w) \times Q(x)(w) \leq [[is larger than]] (w)(x)(y)$
- <u>Relativity of Reference</u>
- (68a) $||\mathbf{A}|| = \lambda w$. $[\![\mathbf{A}]\!]$, for lexical \mathbf{A}
- (b) $||\mathbf{A}\mathbf{B}|| = \lambda w. ||\mathbf{A}||(w) \oplus ||\mathbf{B}||(w), \text{ if } [|\mathbf{A}\mathbf{B}|] = [|\mathbf{A}|] \oplus [|\mathbf{B}|]$
- (69a) **[John thinks it's raining]**
- = $APP^{ext}(APP^{int}([thinks]], [it's raining]]), [John])$
- NB: APP^{*ext*}(*A*,*B*) = λw . *A*(*w*)(*B*(*w*)); APP^{*int*}(*A*,*B*) = λw . *A*(*w*)(*B*)
- (b) ||John thinks it's raining|| (w)
- = $APP^{ext}(|| thinks it's raining||(w), ||John ||(w))$
- = $APP^{ext}(APP^{int}(|| \mathbf{thinks}||(w), ||\mathbf{it's raining}||(w)), ||\mathbf{John}||(w))$
- = APP^{ext}(APP^{int}(**[thinks]**, **[it's raining]**), **[John]**)
- = **[John thinks it's raining]**
- (70) $//A// = \pi(\llbracket A \rrbracket)$, for lexical A
- (b) $//A B// = //A// \oplus //B//$, if $[A B] = [A] \oplus [B]$
- (c) $\pi_e: U \to U$ is a (non-trivial) bijection; π_s and π_t are identities on W and $\{0,1\}$; π_{ab} maps any f of type ab to $\{(\pi x, \pi y) \mid f(x) = y\}$
- (d) //S// = [S], for any expression S
 - \ldots provided that all compositions \oplus are invariant
- NB: \oplus is invariant iff $\pi(\oplus) = \oplus$ for all permutations π
- <u>Further topics</u>
- Externalism
- Attitudes de se
- Granularity

Lewis (1974)

Putnam (1980)

References

- Buridanus, Johannes (1350): Sophismata. Stuttgart 1977.
- Carnap, Rudolf (1947): Meaning and Necessity. Chicago/London.
- Cresswell, Maxwell J. (1973): Logics and Languages. London.
- Condoravdi, Cleo; Crouch, Dick; van den Berg, Martin (2001): 'Preventing Existence'. In: *Proceedings* of the international conference on formal ontology in information systems. Ogunquit, Maine. 162–73.
- Forbes, Graeme (2006): Attitude Problems. An Essay on Linguistic Intensionality. Oxford.
- Frege, Gottlob (1891): Function und Begriff. Jena. [English translation: 'On Function and Concept'. In: M. Beaney (ed.), The Frege Reader. Oxford 1997. 130–48]
- (1892): 'Über Sinn und Bedeutung'. Zeitschrift für Philosophie und philosophische Kritik (NF) 100, 25–50. [English translation: 'On Sinn and Bedeutung'. In: M. Beaney (ed.), The Frege Reader. Oxford 1997. 151–71]
- Gallin, Daniel (1975): Intensional and Higher-order Modal Logic. Amsterdam.
- Hintikka, Jaakko (1969): 'Semantics for Propositional Attitudes'. In: J. W. Davis & others (eds.), *Philosophical Logic*. Dordrecht. 21–45.
- Kaplan, David (1968): 'Quantifying in'. Synthese 19 (1968), 178–214.
- (1975): 'How to Russell a Frege-Church'. Journal of Philosophy 72, 716–29.
- Larson, Richard (2002): 'The Grammar of Intensionality'. In: G. Preyer & G. Peter (eds.), Logical Form and Language. Oxford. 228–262.
- Lewis, David K. (1974): "Tensions'. In: M. K. Munitz & P. K. Unger (eds.), Semantics and Philosophy. 49–62.
- Meinong, Alexius (1904): Über Gegenstandstheorie. Leipzig.
- Montague, Michelle (2007): 'Against Propositionalism'. Noûs 41, 503–18.
- Montague, Richard (1969): 'On the Nature of Certain Philosophical Entities'. The Monist 53, 159-95.
- (1970a): 'Universal Grammar'. Theoria 36 (1970), 373–98.
- (1970a): 'English as a Formal Language'. In: B. Visentini (ed.), *Linguaggi nella società e nella tecnica*. Milan. 189–223.
- (1973): 'The Proper Treatment of Quantification in Ordinary English'. In: J. Hintikka et al. (eds.), Approaches to Natural Language. Dordrecht 1973. 221–242.
- Partee, Barbara (1987): 'Noun Phrase Interpretation and Type Shifting Principles'. In: J. Groenendijk et al. (eds.), Studies in Discourse Representation Theory and the Theory of Generalized Quantifiers. Dordrecht. 115–43.
- Putnam, Hilary (1980): 'Models and Reality', Journal of Symbolic Logic 45, 464-82.
- Quine, Willard Van Orman (1956): 'Quantifiers and Propositional Attitudes'. *Journal of Philosophy* **53**, 177–87.
- Russell, Bertrand (1905): 'On Denoting'. Mind 14, 479–93.
- Schwarz, Florian. (2006): 'On *needing* Propositions and *looking* for Properties'. In M. Gibson & J. Howell (eds.), *SALT XVI Conference Proceedings*. Ithaca, NY. 259–76.
- Szabó, Zoltan G. (2003): 'Believing in Things'. *Philosophy and Phenomenological Research* LXVI, 584–611. Whitehead, Alfred North; Russell, Bertrand (1905): *Principia Mathematica*. To *56. Cambridge.
- Wittgenstein, Ludwig (1921): 'Logisch-philosophische Abhandlung'. In: W. Ostwald (ed.), Annalen

der Naturphilosophie, Vol. 14. 185–262 [Revised 'official version, with English translation:

L.W., Tractatus logico-philosophicus / Logisch-philosophische Abhandlung. London 1922]

- Zimmermann, Thomas Ede (1983): 'Notes on a Recent Textbook in Semantics'. *Theoretical Linguistics* **10**, 65–79.
- (1987): 'Transparent Adverbs and Scopeless Quantifiers'. In: J. Groenendijk et al. (eds.), Foundations of Pragmatics and Lexical Semantics. Dordrecht. 81–99.
- (1993a): 'Scopeless Quantifiers and Operators'. Journal of Philosophical Logic 22, 545-561.
- (1993b): 'On the Proper Treatment of Opacity in Certain Verbs'. Natural Language Semantics 1 149–79.
- (2001): 'Unspecificity and Intensionality'. In: C. Féry & W. Sternefeld (eds.), Audiatur Vox

Sapientiae. Berlin. 514–33. – (2006): 'Monotonicity in opaque verbs'. Linguistics and Philosophy **29**, 715–61.