
1

Overall goal

Montagovian semantics for Computer Scientists, or
Derivation calculators for Semanticists

Derivations and normalizations are boring, let the computer
do it

Gains
I for NL researchers: a helpful tool
I for PL researchers: an interesting application to build tools

for

Beginning of a beautiful friendship
(or, collaboration, or at least mutual comprehension)

http://okmij.org/ftp/gengo/NASSLLI10/

http://okmij.org/ftp/gengo/NASSLLI10/

2

Grand goal

NL researchers will
I gain rational reconstruction of Montagovian tricks
I import developed CS ideas:

side effects, continuations, regions, staging, dependent
types

PL researchers will
I export developed CS ideas:

side effects, continuations, regions, staging, dependent
types

I build theories of programming language competence

All would benefit from connections with logic and probability
theory

3

Plan
June 18

I Making (intuitive) sense of our metalanguage (Haskell)
I CFG: writing and (re-)interpreting derivations

overall: how to embed (object) languages and represent
(grammar/type) derivations

June 19 Denotations and truth conditions: LLF
I Propositional logic
I STLC (STT)
I Simplifying formulas:

teaching computer simple logical inferences

June 20
I Simple language fragments and interpreters
I Quantifiers, in two ways
I Quesion: quantifiers and scope ambuguity

4

Plan, cont

June 21
I Pronouns. Donkey anaphora
I Dynamic semantics: sentence as an imperative program
I Extending previous language fragments, interpreters and

STT to account for information “update”
I A compositional semantics of donkey anaphora

June 22
I Scope and inverse linking in continuation semantics

5

Main ideas

I Calculemus: yields, denotations
I Many fragments, languages, interpretations
I Growing fragments and languages
I Interactivity
I Montagovian tradition

6

The look of Haskell

I GHCi prompt
I Arithmetic, Logic, Strings
I Abstractions and applications
I Types, type annotations, type errors
I Definitions, parametrized definitions

7

Exercises 1

twice = \f → \x → f (f x)

I How else we can write this definition?
I Does this term reminds us something from

lambda-calculus?
I How to quickly verify that?

8

Exercises 2

1. Write Church numeral for 0

2. Write increment incr. How to test it?

3. Write addition, multiplication, exponentiation, decrement

9

Further look at Haskell

Pairs (products)
introduction, elimination, pattern-matching in definitions

Sums (co-products)
introduction, elimination, defining by clauses

Why pairs are called products and why Either is called a sum or
a co-product?

Polymorphic types

10

Exercises 3

Write functions of these types:

((), a) → a
a → ((), a)
Either a b → (a → c) → (b → c) → c
((a, b) → c) → (a→ b→ c)
(a→ b→ c) → ((a,b) → c)
a → ((a → f) → f)
(((a → f) → f) → f) → (a → f)
(Either a b → f) → (a → f , b → f)
((a, b) → f) → (((Either (a→ f) (b→ f)) → f) → f)

I what do these functions do?
I What do these types remind you of?
I What do the terms your wrote signify?

11

Exercises 4

1. How polymorphic types relate to universals?

2. Why existentials in Haskell look the way they do?

12

Exercises 5

1. Define the data type of Pizzas
The datatype describes which baked thing can be
considered a pizza and which cannot.

2. Define a data type for burrito

13

Exercises 6

Think about representing the derivation of, and computing yield
and truth values of two sample sentences from the Semantics
boot camp:

I Rick Perry is conservative
I Rick Perry is in Texas

14

Map

Symantics
Lambda

Quantifier

Pronoun
Dynamics

States

EN

EN

EN

JA

JA

Sem

Sem

Sem

D

D

R

R

P

C

P

C

P

C

