Category Theory for All: Homework 1

Valeria de Paiva, valeria.depaiva@gmail.com

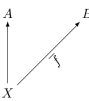
June 17, 2012

Part I: Generic questions about you

- 1. Which degree are you pursuing, if any?
- 2. Do you have favorite and/or less liked parts of Mathematics? What are they? Why? (don't worry if you don't know that, I can never say why I don't like the bits of Maths that I don't like..)
- 3. Would you prefer to answer #2, if Mathematics was substituted by Programming/Linguistics/Philosophy/etc...?Which would be your favorite and less liked bits then?

Part II: Categories

1. Consider usual sets with partial functions. A partial function *f* from *A* to *B* is a total function from a subset of *A*, say *X*, to *B* which we could write as:



Draw and define the natural composition of two partial morphisms and show that sets and partial maps form a category PartFun.

2. Now consider a collection of structures Pno (you will show it's a category..) whose objects are triples (A, α, a) where A is a set, a is an element of A and $\alpha: A \to A$ is a chosen map. Given two such structures (A, α, a) and (B, β, b) a morphism $f: (A, \alpha, a) \to (B, \beta, b)$ is a function such that $\alpha; f = f; \beta$ and f(a) = b.

A.Verify that Pno is a category.

B.Show that (N, succ, 0) where succ is the usual successor function on the natural numbers is an object of Pno.

C. Show that for any object (A, α, a) of Pno there is an unique arrow $f: (N, succ, 0) \rightarrow (B, \beta, b)$ and describe the behaviour of the function f.