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Overview

▸ So far we focused on two sorts of functions, and corresponding
functional expressions: monotone and antitone.

▸ The basic insight behind the Monotonicity Calculus was that type
domains for most functional expressions inherit a preorder from that
associated with the basic truth type domain (2, ≤).

▸ In fact, this ordered set has a lot more structure: it is also the
smallest Boolean lattice: (2, +, ⋅ , 0, 1). The pre-ordering ≤ is then
defined so that x ≤ y if and only if x + y = y . Moreover this
structure is inherited by any domain for a type that ends in t:

Proposition
If B = (B,∨,∧, 0, 1) is a Boolean lattice and A is any set, the set of
functions f : A Ð→ B forms a Boolean lattice, in which
f ∨ g(a) = f (a) ∨ g(a), f ∧ g(a) = f (a) ∧ g(a), and 0 and 1 are the
constant functions sending all a ∈ A to 0 and 1, respectively.
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Overview

▸ Already in the case of predicates this gives us a whole host of new
relations. Not only can we compare X and Y by inclusion, X ⊆ Y ,
but we can also talk about exclusion relations: X ∩Y = ∅, etc.

▸ Satisfyingly, these relations are projected by various functional
expressions in predictable ways, just like inclusion relations.

▸ In this lecture we explore reasoning about inclusion and exclusion
together, as a modest extension of the Monotonicity Calculus. One
of the central points is that by incorporating exclusion relations we
can actually derive new instances of inclusion.

▸ The fundamental insight behind this idea, as well as the practical
applications to be discussed later, are due to Bill MacCartney [2, 3].
The formalization in the style of Monotonicity Calculus, including
the type marking system and the function classes, and the
connection to strong NPIs, is from a forthcoming paper of mine [1].
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Introducing Exclusion

▸ Consider the following intuitively valid pattern:

Every occupation that involves a giant squid is hazardous.

Not every occupation that involves a cephalopod is safe.

▸ This involves one case of inclusion.

Jgiant squidK ⊆ JcephalopodK.

▸ But it also involves two cases of exclusion. Informally,

JhazardousK ∩ JsafeK = ∅.

JeveryK ∩ Jnot everyK = ∅ and JeveryK ∪ Jnot everyK = the universe

i.e., JeveryK = Jnot everyK,

▸ Can an example like this be captured with monotonicity reasoning?
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Introducing Exclusion

Every occupation that involves a giant squid is hazardous.

Not every occupation that involves a cephalopod is safe.

▸ It seems these particular exclusion relations can be written as
(boolean combinations of) inclusion relations:

JhazardousK ⊆ JsafeK,

JeveryK ⊆ Jnot everyK & JeveryK ⊆ Jnot everyK

▸ The problem is that we have not seen any special rules that allow us
to substitute such terms in a validity preserving way. We will see
shortly that we need more information about the quantifiers than
just their monotonicity properties.
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Introducing Exclusion

Definition (The Set R of Relations)
For any bounded, distributive lattice we define:

x ⊑ y x ∧ y = x (x ≤ y)
x ⊒ y x ∨ y = x (x ≥ y)
x ∣ y x ∧ y = 0

x ⌣ y x ∨ y = 1

We write x ≡ y if both x ⊑ y and x ⊒ y ; write x ⋏ y if both x ∣ y and
x ⌣ y ; and write x#y for the universal (uninformative) relation. Thus we
define the set R of relations to be:

≡, ⊑, ⊒,⋏, ∣, ⌣, #.

Examples:

▸ hazardous ∣ safe

▸ animate object ⌣ non-human

▸ with ⋏ without

▸ juggles # pacifist
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Introducing Exclusion

(R,≪)

The relations in R can be ordered according to:

R ′ ≪ R just in case, whenever xRy , also xR ′y .

#

⊑ ⊒ ⌣ ∣

≡ ⋏

Lemma
In any bounded distributive lattice, if x and y are distinct from 0 and 1,
there is a unique ≪-maximal R ∈ R such that xRy.
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Additivity and Multiplicativity

▸ For the relations ⊑ and ⊒, we have already studied classes of
functions that project these in predictable ways: monotonic functions
project ⊑ as ⊑ and ⊒ as ⊒, while antitonic functions reverse them.

▸ What about for the rest of the relations? Can we refine the class of
functions usefully, beyond monotonic/antitonic/non-monotonic?

▸ The answer is positive. First recall the following characterizations of
monotonic and antitonic functions:

Lemma
The following are (each) equivalent to f being monotone:

● f (x) ∨ f (y) ≤ f (x ∨ y) ; ● f (x ∧ y) ≤ f (x) ∧ f (y).

Lemma
The following are (each) equivalent to f being antitone:

● f (x ∨ y) ≤ f (x) ∧ f (y) ; ● f (x) ∨ f (y) ≤ f (x ∧ y).
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Additivity and Multiplicativity

▸ Our refined function classes result simply from turning each one of
these ‘≤’ signs into an ‘=’ sign.

Definition

1. f is additive if f (x ∨ y) = f (x) ∨ f (y).

2. f is multiplicative if f (x ∧ y) = f (x) ∧ f (y).

3. f is anti-additive if f (x ∨ y) = f (x) ∧ f (y).

4. f is anti-multiplicative if f (x ∧ y) = f (x) ∨ f (y).

▸ These function classes made an appearance in semantics through
early work of Hoeksema and Zwarts.
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Additivity and Multiplicativity

Lemma

1. The set of anti-additive functions from A to B is equal to the set of
additive functions from A to Bop.

2. The set of anti-multiplicative functions from A to B is equal to the
set of multiplicative functions from A to Bop.
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Additivity and Multiplicativity

▸ To obtain function classes that project the relations in R in useful
ways we need one extra property in each case:

Definition

1. f is completely additive if it is additive and f (1) = 1.

2. f is completely multiplicative if it is multiplicative and f (0) = 0.

3. f is completely anti-additive if it is anti-additive and f (1) = 0.

4. f is completely anti-multiplicative if it is anti-mult. and f (0) = 1.

▸ From here on, by X we mean completely X .

▸ For quantifiers, for example, this will amount to assuming
non-triviality of predicate extensions: either A ≠ ∅ or A ≠ P(E ).
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Additivity and Multiplicativity

* ‘Few’ fails all of these properties in its first argument.

* ‘At least two’ is (merely) monotone in both arguments.

* ‘If’ is (merely) antitone in its first argument.

* ‘Some’ is additive in both arguments.

* ‘No’ is anti-additive in both arguments.

* ‘Most’ is multiplicative in its second argument.

* ‘Not every’ is anti-multiplicative in its second argument.

* ‘Is’ is additive and multiplicative.

* ‘Not’ is anti-additive and anti-multiplicative.
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Projectivity Marking

▸ Since we have natural language realizations of all possible
combinations of these function properties, we correspondingly
introduce new type markings for each. Σ is the set of markings:

+,−,|,x,⊞,⊟,⊕,⊖, ●.

+ : monotonic

| : additive

⊞ : multiplicative

⊕ : additive and multiplicative

● : non-monotonic

− : antitonic

x : anti-additive

⊟ : anti-multiplicative

⊖ : anti-additive and
anti-multiplicative
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Projectivity Marking

(Σ, ⪯)

The set Σ of signatures also has a natural ordering:

ψ ⪯ ϕ just in case any ϕ-function is also a ψ-function.

●

+ −

⊞ | ⊟ x

⊕ ⊖
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Projectivity Marking

Definition (Projection)
The projection of R under ϕ is the ≪-maximal R∗ ∈ R for which:

Whenever xRy and f is a ϕ-function, f (x)R∗f (y).

We write [R ]ϕ for the projection of R under ϕ.

[ ] ⊑ ⊒ ⋏ ∣ ⌣

+ ⊑ ⊒ # # #
| ⊑ ⊒ ⌣ # ⌣

⊞ ⊑ ⊒ ∣ ∣ #
⊕ ⊑ ⊒ ⋏ ∣ ⌣

[ ] ⊑ ⊒ ⋏ ∣ ⌣

− ⊒ ⊑ # # #
x ⊒ ⊑ ∣ # ∣

⊟ ⊒ ⊑ ⌣ ⌣ #
⊖ ⊒ ⊑ ⋏ ⌣ ∣
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A Projectivity Calculus

▸ Do we now have enough information to derive our example?

s1 = Every occupation that involves a giant squid is hazardous.

t = Not every occupation that involves a cephalopod is safe.

We need to show s1 ⊑ t.

▸ We can assume ‘every’ has now has marked type p
x
Ð→ (p ⊞

Ð→ t).
(Recall p is an abbreviation for e → t.)

▸ Given the assumption that ‘hazardous ∣ safe’, by one substitution,
and using our projectivity chart from the last slide, we can conclude:

s1 ∣ s2

s2 = Every occupation that involves a giant squid is safe.
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A Projectivity Calculus

▸ Take now s2 and consider s3:

s3 = Not every occupation that involves a giant squid is safe.

▸ If we know that ‘not every ⋏ every’, then our table shows:

s2 ⋏ s3

▸ The expression ‘not every’ has type p
|
Ð→ (p ⊟

Ð→ t), so its first
argument is in an additive position. Hence given that ‘giant squid ⊑

cephalopod’, we can further conclude that:

s3 ⊑ t

t = Not every occupation that involves a cephalopod is safe.

▸ As a result, we have:
s1 ∣ s2 ⋏ s3 ⊑ t

So what?
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A Projectivity Calculus

Joining Relations
▸ To complete the derivation we need to know what follows from a

sequence of relations between expressions. In general, if xRy and
yR ′z , for R, R ′ ∈ R, what can we conclude about x and z?

Definition
The join of R and R ′, denoted R&R ′, is the ≪-maximal relation R∗ ∈ R
such that, if xRy and yR ′z then xR∗z .

& ⊑ ⊒ ⋏ ∣ ⌣

⊑ ⊑ # ∣ ∣ #
⊒ # ⊒ ⌣ # ⌣

⋏ ⌣ ∣ ≡ ⊒ ⊑

∣ # ∣ ⊑ # ⊑

⌣ ⌣ # ⊒ ⊒ #

▸ Returning to the previous example, we have:

((∣ & ⋏) & ⊑) = (⊑ & ⊑) = ⊑

Hence, s1 ⊑ t.
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A Projectivity Calculus

Signature Arithmetic
▸ The final missing ingredient is to understand the behavior of

ϕ-functions within the scope of ψ-functions, for ϕ, ψ ∈ Σ.

▸ We saw that with + and −, this is simply captured by
positive/negative arithmetic. What about for the full set Σ?

⋅ + − | x ⊞ ⊟ ⊖

+ + − + − + − −

− − + − + − + +
| + − | − + ⊟ ⊟

x − + x − − ⊞ ⊞

⊞ + − + x ⊞ − x

⊟ − + − | − + |

⊖ − + x | ⊟ | ⊕

Lemma
(Σ, ⋅,⊕) is a monoid.
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A Projectivity Calculus

A Simple Relational Calculus

t ⊑ t

t ⊑ t′

t′ ⊒ t
t ⊒ t′

t′ ⊑ t

t ∣ t′

t′ ∣ t

t ⌣ t′

t′ ⌣ t

t ∣ t

sRs ′
tRu uR ′v
t(R & R ′)v

Finally, where o(s, t) denotes the projectivity of the occurrence of s in t:

sRs ′

t[R ]ϕts
′←s

provided o(s, t) = ϕ.
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A Projectivity Calculus

Example

▸ s1 = Every occupation that involves a giant squid is (hazardous)⊞.

▸ s2 = (Every)⊕ occupation that involves a giant squid is safe.

▸ s3 = Not every occupation that involves a (giant squid)| is safe.

▸ t = Not every occupation that involves a cephalopod is safe.

hazardous ∣ safe
s1 ∣ s2

every ⋏ not every
s2 ⋏ s3

s1 ⊑ s3

giant squid ⊑ cephalopod
s3 ⊑ t

s1 ⊑ t
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Interlude: Strong NPIs

▸ Within the domain of monotonicity reasoning, we said that our
marked types were in some sense genuinely syntactic. Now having
incorporated exclusion relations are we going deeper into semantics
and moving beyond what could be called syntax?

▸ Arguably no. Early on, Zwarts, and later van der Wouden, showed
that there are in fact different classes of NPIs that require different
strengths of negation. Some, such as ‘yet’ or ‘any’, require mere
antitonicity. Others seem to require anti-additivity, e.g. ‘in ages’.
Yet others, such as ‘a bit’, seem to require both anti-additivity and
anti-multiplicativity, i.e. full negation.

1. If you make any progress, let me know.

2. * If you have written about that in years, you should write a book.
3. * Not everyone has written about it in years.
4. No one has written about it in years.

5. * No one was a bit happy with the service.
6. Theodore was not a bit happy with the service.
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Interlude: Strong NPIs

Puzzle: What could possibly explain this connection?
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NatLog and the RTE Challenge

▸ Much of what we have discussed in this course is of a more
theoretical nature. One might wonder how much of this could
actually be implemented in concrete applications.

▸ In this last part of the course, we will discuss work by Bill
MacCartney [2], and by MacCartney and Manning [3], that
demonstrates its viability.

▸ The setting is the PASCAL RTE Challenge, a contest that was
organized for a number of years that involves detecting whether a
hypothesis follows from a premise, contradicts the premise, or is
consistent with the premise but is not entailed by it.

▸ Problem premises come from real sources and are typically rather
long, while hypotheses are devised for the specific premise and tend
to be shorter.
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NatLog and the RTE Challenge

Example Problems

p: Sharon warns Arafat could be targeted for assassination

h: prime minister targeted for assassination

p: Twenty-five of the dead were members of the law enforcement
agencies and the rest of the 67 were civilians

h: 25 of the dead were civilians

p: Mitsubishi Motors Corp.’s new vehicle sales in the US fell 46 percent
in June

h: Mitsubishi sales rose 46 percent

p: The main race track in Qatar is located in Shahaniya, on the
Dukhan Road

h: Qatar is located in Shahaniya
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NatLog and the RTE Challenge

Stanford RTE System

▸ Before summarizing MacCartney and Manning’s NatLog system,
which uses the ideas we have covered, we first give a quick overview
of the Stanford RTE system, a closely related system.

▸ The system is split up into three stages:

1. Generate a typed dependency graph for the premise, and one for the
hypothesis. For example:

2. Compute a partial alignment between the two graphs.
3. Determine whether an entailment holds using a MaxEnt classifier

with features learned from pairs (p, h).
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NatLog and the RTE Challenge

▸ A number of the features used in the classifier are in large part
motivated by semantics and semantic theory. E.g.:

● Polarity: the presence of antitone contexts
● Antinomy: whether aligned words are antonyms, and if so, whether

they are in similar semantic contexts
● Factivity: the presence of factive or non-factive verbs

▸ On the RTE Challenge the Stanford System achieve 59% accuracy
and 65% confidence-weighted accuracy, which at the time (2006)
was state-of-the-art.

▸ The motivation behind NatLog was to achieve yet higher precision,
even if at the cost of recall.
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NatLog and the RTE Challenge

NatLog
The NatLog algorithm is split up into five stages:

1. Linguistic analysis:
● tokenization, lemmatization, parsing, NER, etc.
● monotonicity/projectivity marking

2. Alignment: many-to-one with four edit types: eq, sub, del, ins.

3. Lexical entailment classification: for different possible edits,
determine the right relation.
● Most cases are learned with a classifier from hand labeled examples.
● Some special cases are hand-coded, e.g. sub(all, none) = ∣.
● This is analogous to our lexical assumptions in the earlier discussion.

4. Using stages 1 and 3, determine the overall relation that holds
between each edit. Roughly, and in the vocabulary of our earlier
discussion, this involves projecting the relation through the functions
that take it as argument.

5. Join the sequence of edits together using the join table as we
presented earlier.
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NatLog and the RTE Challenge

▸ On the RTE Challenge, NatLog was significantly higher than the
Stanford System on precision (70% versus 61%), lower on recall
(36% versus 60%), and roughly comparable on overall accuracy.

▸ The interesting result, however, is that the combination of the
Stanford System and NatLog in a hybrid system outperformed both.

▸ The Stanford System assigns a score to a pair and chooses based on
a learned threshold. The hybrid system adjusts this score by +δ or
−δ, depending on the prediction given by NatLog.

▸ The value of δ is learned, and the resulting system achieves a 4%
gain in accuracy, leading to 64% accuracy overall.
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Summary
▸ The guiding idea of this course has been that much of the logic of

natural language can be captured by appealing merely to ‘surface
level’ information. We saw many argument patterns that can be
nicely captured using deductive rules operating directly over parsed
natural language sentences, with no translation to a separate system.

▸ The striking parallels between these argument patterns and the
distribution of NPIs suggests that much of this logic is closely related
to syntax. Understanding this situation better would be worthwhile.

▸ We also saw that many of these inference patterns are quite easy
and efficient for humans and computers alike. It seems that
computational linguistics and psychology of language can benefit
from clear-headed theoretical proposals. But also vice versa,
theoretical work should be appropriately sensitive to, and perhaps
even motivated by, psychological and computational considerations.
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