Surface Reasoning
Lecture 3: A Natural Logic Proof System

Thomas lcard

June 18-22, 2012

=] T = = = DA
.S S
Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System

1

= Overview

m Back to Types

m Review of Lambek Calculus
m The Order Calculus OC

m The Proof System

m Examples

m References

Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System

Overview

> The basic idea of Zamansky et al. (2006) is to build a natural logic
proof system directly on top of the Lambek Calculus. The resulting
system avoids the kind of algorithm Sanchez-Valencia and van Eijk
propose. Monotonicity reasoning is instead carried out by using the
1 and B rules of A-calculus, together with monotonicity proof rules.

> The nice thing about this paper is that everything is made
completely explicit. Each step of the reasoning is fully formalized.

» While the system is probably not useful for practical applications,
the resulting logic is interesting and attractive. Lots of open
questions about this system, and related systems, remain.

Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System

Back to Types

» The setup in this paper is slightly different from the version of
Lambek Calculus we had before. We take the Lambek Calculus with
A-terms, but instead of marking categories with monotonicity
information we will be marking types, and keeping track of types by
subscripting them on A-terms.

> The categories are there only for syntax. Once an expression is
parsed, the category label will be dropped.

Definition (Marked Types)
The set 7+ D 7 of marked types is given by:
» The basic types e and t are in 7.

> lfo,t€Tt thenno 1T, 0 51Tt ando 1€ T,

> We will sometimes write o = T instead of ¢ — T, so that we can
write down our set of markings as M = {+, —, e}.

Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System

Back to Types
O
» Type domains are given as usual, with the exception that a term of
type ¢ Sris always interpreted as a monotone function in DTD”,
and a term of type ¢ — T is interpreted as an antitone function.

> Since terms of types 0 — T, 0 £ 7, and ¢ S T are all interpreted
in the same domain, it may sometimes be useful to compare them.
(Recall that < relations are inherited all the way up the hierarchy.)
This motivates the following definition

Definition (Unmarked Types)

If T € T, let T° be the result of erasing all +'s and —'s. That is,
e If T is a basic type, T° = T.
o If Tis either 0 — p, o =5 p, or & — p, then T° = ¢° — p°.

> If T° = 0° we will write T = 0. Hence 7 &~ 7.

Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System 5

Back to Types

> As a side note (which will come up again in a later lecture), since we
are restricting the interpretations of terms with marked functional
types, we must ensure that arguments to functions are appropriate,
which is no longer guaranteed by matching categories. (In fact, if we
were in LP the categories would be superfluous altogether.)

» We can define a partial order < on =-equivalence classes as follows:
o TXTforall T;

° oﬂTjaﬁr,forme{—&—,—}.

elft <7 ando <0 theno’ B 1 <0 B 1, forany me {4, —, o}.

» T < 0 can be read,
Anything of type T can also be interpreted as of type .

» We require that ¢ < ¢’ in order for t,m_to take vy as argument.

Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System

Back to Types
e e
> In our lexicon, instead of, e.g.:
every, Ax.Ay.Vz(x(z) — y(z)) : (s\iv)/n
or
every, (s\iv")/n~

we will write
ever: _ c(s\iv)/n.
y(e—»t)ﬂ((eﬂt)it) (\)/
monotonicity reasoning.

» That is, we keep only as much of the meaning as we will need for

» Throughout let us abbreviate e — t as p, the ‘predicate type’'. With
that our lexical entry becomes:

every - oty (s\iv)/n.

=] = = = = DAl
.S S
Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System

Review of Lambek Calculus
O
> Recall the (associative) Lambek Calculus L.
Ax) —M —
(A%) Xt Apxr i A
Aw»t
(/E)

[%

’ﬂT:A/B

I'»u:B
AoTw» t(u)r: A

I'»u:B
(\E)

A»t,m ’B\A
T —T
ToAw t(u)r: A
Aoxr:Aw ity : B
(/I) Xt 0

Av» (Ax.t)g—r: B/A

(\1)

xr:AoAw ty: B

Aw (Ax.t)gr: B\A

> In all of the above, TYPE(A) = t°, TYPE(B) = ¢°, and 0 < 0.
o = = = 9Hag
.S S
Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System

The Order Calculus OC
s
» Again, we shall write LFT»t: A.

> Given a grammar G = (X, CAT, LEX), the language of G is:
L[G] ={w | 3T € LEX, suchthatL FT»w:s}.

» We can also specify the language of G for other types T. Where
CATT is the set of categories A for which (TYPE(A))® = T, then:

LEG]={w|3IT € LEX, Ac CAT", st. LET»w: A}
So in particular, £[G] = L![G].

Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System

The Order Calculus OC
s

> The central contribution of Zamansky et al. (2006) is an order-
calculus over the languages given by the Lambek Calculus.

» For each undecorated type T, we define an ordering <; between

terms whose undecorated type is T, i.e. < C L7(G) x LT(G).

» The calculus OC is given by the axioms and rules on the next page.

o & = = = va e
.S S
Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System

The Order Calculus OC

Axioms and Rules of OC

(refl)

T ST" tr

(trans) ts
(mono)

© S s <o u
<
<uL)l <¢, e e t(T_)T(u‘)/ i: :(H)
(repl) t S((r;&r); s - S(u)zao v (abstr) - i;:r)s —
B herwle == o) 7

tﬂ'ﬂT :(0._)1-)0)\Xg‘t(Xg‘)
o = = = LN
.S S
Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System

The Order Calculus OC
e
» If there is a proof of t <; s in OC, we write Foc t <; s.

» Using the standard interpretation of A-terms in models M under
assignments g, it is possible to show Soundness:
Theorem (Zamansky)

IftFoc t <t s, then for all M and g, [tlmg < [SIm,g-

» Completeness seems to be open.

=] T = = = DA
.S S
Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System

The Proof System

A Natural Logic Proof System

» The last step is to define a proof system over words and other
expressions of category s, type t, using a special expression T. This
element will play the role of constant true.

> Given expressions ti, ..., t, of category s, let us say,
t1,...,th F t,
just in case,
Foc T <ti,...toc T < t, together imply Foc T < t.

» That is, whenever ty, ..., t, are true, so is t.

» Soundness of this calculus follows from soundness of OC.

.S S
Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System 13

The Proof System
e e

> Let the lexicon be as follows:

e Theodore, np e broccoli, np

e candidate, n o likes, tv

e every, (s/iv)/n e adores tv

e some, (s/iv)/n e runs, iv

e obsequious, (n/n) e who, (n\n)/iv

e deferential, (n/n) e excessively, (n/n)/(n/n)

> In this setting, categories are not marked, types are. Some of the

interesting cases of type markings are as follows:

o every, p— (p > t)

+ +
e some, p — (p — t)
+

e who, p = (p — p)

The other types are given by the type assignment to categories.

» We can also add various meaning postulates as order axioms:
e adores SeH(P) likes
o Axp.excessively(deferential(x)) <,_., obsequious

Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System 14

Examples
e

Example 1

Every candidate who Theodore likes runs - Every candidate who Theodore adores runs.

adores <._., likes

: (repl)
adores(x.) <, likes(xe)
(mono)
Theodore +t(adores(x)) <; Theodore +t(|ikes(x))
P P
abstr
Ax.Theodore(adores(x)) <, Ax.Theodore(likes(x)) ()()
mono
who(Ax.Theodore(adores(x))) <,—, who(Ax.Theodore(likes(x))) (repl)
re
[candidate]who(Ax. Theodore(adores(x))) <, [candidate]who(Ax.Theodore(likes(x))) (p.)
anti

every([candidate]who(Ax. Theodore(likes(x)))) <p—:¢
every([candidate]who(Ax.Theodore(adores(x)))
(every([candidate]who(Ax. Theodore(likes(x)))))runs <,
(every([candidate]who(Ax. Theodore(adores(x)))))runs

(repl)

(N.B. When we type raise ‘Theodore’, showing that L - Theodore: e » Theodore: p — t, the
resulting function will always be a monotone function; [Theodore,_..] will denote the evaluation

functional on the individual, necessarily monotonic.)

.S S
Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System 15

Examples

Example 2

Some excessively deferential candidate likes broccoli - Some obsequious candidate likes broccoli.

Ax.excessively(deferential(x))
. . . — (B
excessively(deferential(candidate)) =
Ax.excessively(deferential(x))(candidate)

< obsequious

Ax.excessively(deferential(x))(candidate)
excessively(deferential(candidate)) < obsequious(candidate)

(repl)
< obsequious(candidate)
some(excessively(deferential(candidate))) < some(obsequious(candidate))

(trans)
(mono)

some(excessively(deferential(candidate)))(likes broccoli)

(repl)

=] = =
.S S
Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System

< some(obsequious(candidate))(likes broccoli)

16

Examples

Further topics and issues

» The paper by Zamasky et al. shows that their proof system derives
everything that is derivable in the Sdnchez-Valencia / van Eijk
version of Monotonicity Calculus.

» The paper considers additional markings, not just + and —. For
example, for modifier types T — T, they focus on restricted
modifiers t for which t(u) <r u. This has a special rule, where R
stands for restrictive:

(rmod)

tglgT(Uaz) <to Ugy

> They also consider markings and corresponding rules for l.u.b. and
g.l.b. operators of type T — (T — T), such as ‘or’ and ‘and’.

> As was already mentioned, a number of interesting (meta-)logical
questions remain: How powerful is the proof system? Is it complete?
Is the theory of standard models over this language decidable?

Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System 17

References

A. Zamansky, N. Francez, and Y. Winter. ‘A ‘Natural Logic’

Inference System Using the Lambek Calculus’, Journal of Logic,
Language, and Information, 15(3): 273-295, 2006.

= = - = =
.S S
Thomas Icard: Surface Reasoning, Lecture 3: A Natural Logic Proof System

	Overview
	Back to Types
	Review of Lambek Calculus
	The Order Calculus OC
	The Proof System
	Examples
	References

