
Surface Reasoning
Lecture 2: Logic and Grammar

Thomas Icard

June 18-22, 2012

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 1



� Categorial Grammar

� Combinatory Categorial Grammar

� Lambek Calculus

� Interlude: Syntax/Semantics Interface

� Sánchez-Valencia’s Natural Logic

� van Eijk’s Marking Algorithm

� References

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 2



Categorial Grammar

(Ajdukiewicz/Bar-Hillel) Categorial Grammar
Define a set CAT of categories as follows:
I Some set of basic categories is in CAT.
I If A, B ∈ CAT, then both A/B ∈ CAT and A\B ∈ CAT.

Two basic rules:

(FA) A/B, B ⇒ A.

(BA) B, A\B ⇒ A.

If we add to these two more rules we obtain a basic proof system:

(id) A⇒ A.

(cut) If Γ, A, Γ′ ⇒ B and ∆⇒ A, then Γ, ∆, Γ′ ⇒ B.

Here Γ and ∆ are finite sequences of categories.

Definition
CG is the smallest relation containing (id), (FA), and (BA), and closed
under (cut).

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 3



Categorial Grammar

I Given a set Σ of basic lexical items, e.g. natural language
expressions, a lexicon is an assignment of a finite number of
categories to each lexical item:

LEX ⊆ Σ× CAT.

I A string w1, ..., wn ∈ Σ+ is an expression of type B just in case
there is a sequence of categories A1, ..., An such that 〈wi , Ai 〉 ∈
LEX, for each i ≤ n, and A1, ..., An ⇒ B.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 4



Categorial Grammar

A toy lexicon:

I Theodore, np

I candidate, n

I every, some, (s/(s\np))/n

I broccoli, np

I likes, (s\np)/np

I who, (n\n)/(s\np)

Or, abbreviating iv = s\np and tv = iv/np, this simplifies to:

I Theodore, np

I candidate, n

I every, some, (s/iv)/n

I broccoli, np

I likes, tv

I who, (n\n)/iv

Example:

Theodore
np

likes
(s\np)/np

broccoli
np

s\np
s

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 5



Categorial Grammar

A toy lexicon:

I Theodore, np

I candidate, n

I every, some, (s/(s\np))/n

I broccoli, np

I likes, (s\np)/np

I who, (n\n)/(s\np)

Or, abbreviating iv = s\np and tv = iv/np, this simplifies to:

I Theodore, np

I candidate, n

I every, some, (s/iv)/n

I broccoli, np

I likes, tv

I who, (n\n)/iv

Example:

Theodore
np

likes
tv

broccoli
np

iv
s

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 6



Categorial Grammar

Longer example:

every

(s/iv )/n

candidate
n

who

(n\n)/iv

likes
tv

broccoli
np

iv

n\n
n

s/iv

likes
tv

Theodore
np

iv
s

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 7



Categorial Grammar

CG versus CFG
Theorem (Gaifman)
The class of languages generated by context free grammars coincides
with the class of languages accepted by categorial grammars.

I Recall our lexicon LEX:

• Theodore, np
• candidate, n
• every, some, (s/iv)/n

• broccoli, np
• likes, tv
• who, (n\n)/iv

I A context free grammar generating the same set of strings would be:

S → NP VP

NP → every N | some N | PN | NP who VP

N → candidate

PN → Theodore | broccoli

VP → likes PN

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 8



Categorial Grammar

I Problem: the following are not strings in the language:

• ‘who Theodore likes’
• ‘likes some candidate’

I In particular, we cannot parse:

• ‘Every candidate who Theodore likes likes some candidate’

I For ‘who Theodore likes’ we would need ‘who’ to have category
((n\n)/tv)/np in addition to (n\n)/iv :

who
((n\n)/tv)/np

Theodore
np

(n\n)/tv
likes
tv

n/n
I Similarly, ‘all’ and ‘some’ would have to have a second category

(iv\tv)/n for object position, in addition to (s/iv)/n.

I This is inelegant and seems to miss some cross-categorial
generalizations.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 9



Combinatory Categorial Grammar

I Combinatory Categorial Grammar (CCG) is an extension of CG with
several further rules. (For more go to Mark Steedman’s course!)

(>B) A/B, B/C ⇒ A/C

(<B) B\C , A\B ⇒ A\C

(>T) A⇒ B/(B\A)

(<T) A⇒ B\(B/A)

I Using >B and >T we can now parse ‘who Theodore likes’:

who
(n\n)/(s/np)

Theodore
np

(>T)
s/(s\np)

likes
(s\np)/np

(>B)
s/np

n\n

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 10



Combinatory Categorial Grammar

I CCG can also capture quantifiers in object position by assigning
‘some’ and ‘all’ an only slightly adjusted category (s\(s/np))/n, in
addition to (s/(s\np))/n for subject position:

Theodore
np

(>T)
s/(s\np)

likes
(s\np)/np

(>B)
s/np

some
(s\(s/np))/n

candidate
n

s\(s/np)
s

I CCG has another rule:

(<Sx ) B/C , (A\B)/C ⇒ A/C

I In general, CCG is stronger than context free, equivalent to so called
linear index grammars (like TAG and other grammatical formalisms).

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 11



Lambek Calculus

I Lambek Calculus is an alternative to CCG. The main idea is that
categories correspond to logical formulas, and category forming
operators correspond to logical constants. “Parsing as deduction”

I The setting is Gentzen-style Natural Deduction, where Γ � A means
the sequence Γ is of category A.

I The basic Lambek Calculus L is given by the following rules:

(Ax)
A � A

∆ � A/B Γ � B(/E )
∆, Γ � A

Γ � B ∆ � A\B
(\E )

Γ, ∆ � A

∆, B � A(/I )
∆ � A/B

B, ∆ � A (\I )
∆ � A\B

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 12



Lambek Calculus

(Ax)
A � A

∆ � A/B Γ � B(/E )
∆, Γ � A

Γ � B ∆ � A\B
(\E )

Γ, ∆ � A

∆, B � A(/I )
∆ � A/B

B, ∆ � A (\I )
∆ � A\B

I From these follow all of the CCG rules, with the exception of <Sx .

∆ � A/B

Γ � B/C [C � C ]1
(/E )

Γ, C � B (/E )
∆, Γ, C � A

(/I )1
∆, Γ � A/C

I That is, if ∆ is of category A/B and Γ is of category B/C , then
∆, Γ is of category A/C . This is just rule >B.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 13



Lambek Calculus

(Ax)
A � A

∆ � A/B Γ � B(/E )
∆, Γ � A

Γ � B ∆ � A\B
(\E )

Γ, ∆ � A

∆, B � A(/I )
∆ � A/B

B, ∆ � A (\I )
∆ � A\B

I From these follow all of the CCG rules, with the exception of <Sx .

∆ � A [B\A � B\A]1
(\E )

∆, B\A � B
(/I )1

∆ � B/(B\A)

I That is, if ∆ is of category A, then it is also of category B/(B\A).
This is rule >T.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 14



Lambek Calculus

I Again, we cannot derive <Sx , which means L is strictly weaker than
CCG.

Theorem (Pentus)
L is context free.

I Still, it allows for elegant derivations without excess categories:

who �(n\n)/(s/np)

Theodore �np

likes �tv [np � np]1
(/E )

likes, np � s\np
(\E )

Theodore likes , np � s
(/I )1

Theodore likes �s/np
(\E )

who Theodore likes �n\n

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 15



Lambek Calculus

I As is well known, in natural language syntax tree structure matters.
We sometimes cannot assume our sequences satisfy associativity.

I The weakest of the Categorial Type Logics is NL:

(Ax)
A � A

∆ � A/B Γ � B(/E )
(∆ ◦ Γ) � A

Γ � B ∆ � A\B
(\E )

(Γ ◦ ∆) � A

(∆ ◦ B) � A
(/I )

∆ � A/B

(B ◦ ∆) � A
(\I )

∆ � A\B
I Adding associativity gives us back L:

Γ[∆1 ◦ (∆2 ◦ ∆3)] � C

Γ[(∆1 ◦ ∆2) ◦ ∆3] � C
I Adding commutativity gives a system called LP:

Γ[(∆1 ◦ ∆2)] � C

Γ[(∆2 ◦ ∆1)] � C
I Clearly, in LP forward and backward slash collapse into a single

binary operator.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 16



Interlude: Syntax/Semantics Interface

Review of Types

I Recall the simple type system T :

• Basic types, throughout these notes e and t, are in T ;
• If τ, σ ∈ T , then (τ → σ) ∈ T .

I We can define a function type: CAT → T such that:

• type(np) = e ;
• type(s) = t ;
• type(n) = (e → t) ;
• type(A/B) = type(A\B) = (type(B)→ type(A)).

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 17



Interlude: Syntax/Semantics Interface

Review of Lambda Calculus
I We now define the class of λ-terms of type τ, denoted Λτ:

• Variables of type τ are in Λτ.
• Constants of type τ are in Λτ.
• If α ∈ Λτ→σ and β ∈ Λτ, then α(β) ∈ Λσ.
• If x is a variable of type τ and α ∈ Λσ, then λx .α ∈ Λτ→σ.

I β and η reduction rules:
(β) (λxτ.ασ)(βτ) =⇒ ασ[βτ/xτ ], provided xτ is free for βτ in ασ.
(η) λxτ.ατ→σ(xτ) =⇒ ατ→σ, provided xτ is not free in ατ→σ.

I The domain D =
⋃

τ∈T Dτ is given by:
• De is assumed to be fixed set E of entities.
• Dt = {0, 1}.
• Dτ→σ = DDτ

σ .

I A model is a pair M = 〈D, I〉, with D a domain and I : LEX→ D,
so that if type(A) = τ, then I(〈w , A〉) ∈ Dτ.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 18



Interlude: Syntax/Semantics Interface

I Now grammars must be given by the set of lexical items, their
categories, and corresponding λ-terms.

Theodore np theo

broccoli np broc

candidate n cand

likes (s\np)/np like

who (n\n)/(s\np) λx .λy .λz .x(z) ∧ y(z)
every (s/(s\np))/n λx .λy .∀z(x(z)→ y(z))
some (s/(s\np))/n λx .λy .∃z(x(z) ∧ y(z))

no (s/(s\np))/n λx .λy .¬∃z(x(z) ∧ y(z))

I To use quantifiers in object position we could add:

every (s\(s/np))/n λx .λy .∀z(x(z)→ y(z))
some (s\(s/np))/n λx .λy .∃z(x(z) ∧ y(z))

no (s\(s/np))/n λx .λy .¬∃z(x(z) ∧ y(z))

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 19



Interlude: Syntax/Semantics Interface

I In NL, L, LP and other Categorial Type Logics, because the
syntactic rules are logical rules, semantics comes ‘for free’ from the
Curry-Howard Correspondence between natural deduction proofs in
intuitionistic implicational logic and typed λ-terms.

I Because all these systems are weaker than IIL, we must take a
sublanguage of full λ-calculus. Johan van Benthem proved that the
correspondence holds for this fragment.

I Our rules for NL now become:

(Ax)
x : A � x : A

∆ � t : A/B Γ � u : B(/E )
(∆ ◦ Γ) � t(u) : A

(∆ ◦ x : B) � t : A
(/I )

∆ � λx .t : A/B

Γ � u : B ∆ � t : A\B
(\E )

(Γ ◦ ∆) � t(u) : A

(x : B ◦ ∆) � t : A
(\I )

∆ � λx .t : A\B

I We write NL ` Γ � t : A, and likewise for L and LP.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 20



Interlude: Syntax/Semantics Interface

Type Raising

Semantically, type-raising corresponds to a certain λ-abstraction.

∆ � t : A [x : B\A � x : B\A]1
(\E )

(∆ ◦ x : B\A) � x(t) : B
(/I )1

∆ � λx .x(t) : B/(B\A)

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 21



Interlude: Syntax/Semantics Interface

Example

who �λx .λy .λz.x(z) ∧ y (z) : (n\n)/(s/np)

Theodore �theo : np

likes �like : tv [w : np � w : np]1
(/E )

likes, w : np � like(w ) : s\np
(\E )

Theodore likes ,w : np � like(theo,w ) : s
(/I )1

Theodore likes �λw .like(theo,w ) : s/np
(\E )

who Theodore likes �λy .λz.like(theo, z) ∧ y (z) : n\n

I We can combine this with ‘candidate’ to form a complex predicate:

NL ` candidate who Theodore likes� λz .like(theo, z)∧cand(z) : n

which is exactly the right result.

I Slogan: “Meaning is a by-product of syntactic derivation.”

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 22



Sánchez-Valencia’s Natural Logic

I The fundamental idea of van Benthem and Sánchez-Valencia’s
Natural Logic is to forget about the λ-terms, shifting a small amount
of the semantics into the syntax, in particular into the categories.

I The crucial features are monotonicity properties of functions.

I Consider the meaning of ‘every’: λx .λy .∀z(x(z)→ y(z)).
As we saw on the first day, this function is antitone in its first
argument, monotone in its second, if we order the domains as usual.

I To capture this, let us write the category of ‘every’ as

(s/(s\np)+)/n−

or abbreviating,
(s/iv+)/n−.

I We can say more generally that A/B+ and A\B+ are categories of
monotone functional items, and A/B− and A\B− of antitone.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 23



Sánchez-Valencia’s Natural Logic

I The steps of Sánchez-Valencia’s polarity marking algorithm are:

1. Assign lexical items their appropriate marked types.
2. Propagate these markings down the proof tree.
3. The polarity of each node is computed.

I The result is a proof tree with just enough information to support
some basic inferential patterns (stay tuned).

I For Step 1 we might label our lexicon as follows:

• Theodore, np
• candidate, n
• every, (s/iv+)/n−

• some, (s/iv+)/n+

• broccoli, np
• likes, iv/np+

• who, (n\n+)/iv+

• no, (s/iv−)/n−

I When interpreting such terms in models we require terms of
category A/B+ and A\B+ are mapped to monotone functions, and
those of A/B− and A\B− are mapped to antitone functions.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 24



Sánchez-Valencia’s Natural Logic

Step 2
Where ∗ ∈ {+,−}:
I (/E):

∆ � A/B Γ � B

(∆ ◦ Γ) � A
=⇒

∆ � A/B
+ Γ � B

(∆ ◦ Γ) � A

∆ � A/B∗ Γ � B

(∆ ◦ Γ) � A
=⇒

∆ � A/B∗

+

Γ � B

*

(∆ ◦ Γ) � A
I (/I):

[B � B ]i

...
∆ ◦ B � A
∆ � A/B

=⇒

[B � B ]i

...
∆ ◦ B � A

+
∆ � A/Bm

I m is − (resp. +) if all the nodes on the path from ∆ ◦ B � A to
[B � B ]i are marked, and an odd (resp. even) number are −.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 25



Sánchez-Valencia’s Natural Logic

Step 2
Where ∗ ∈ {+,−}:
I (\E):

∆ � A\B Γ � B

(Γ ◦ ∆) � A
=⇒

∆ � A\B
+ Γ � B

(Γ ◦ ∆) � A

∆ � A\B∗ Γ � B

(Γ ◦ ∆) � A
=⇒

∆ � A\B∗
+

Γ � B

*

(Γ ◦ ∆) � A
I (\I):

[B � B ]i

...
B ◦ ∆ � A
∆ � A\B

=⇒

[B � B ]i

...
B ◦ ∆ � A

+

∆ � A\Bm

I m is − (resp. +) if all the nodes on the path from ∆ ◦ B � A to
[B � B ]i are marked, and an odd (resp. even) number are −.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 26



Sánchez-Valencia’s Natural Logic

Step 3
I The final step is quite simple:

1. Mark the root node with +.
2. Starting at the leaf nodes, check whether every node along the path

to the root is marked.
3. If it is, and there are an odd number of nodes marked −, label the

node with −. If there are an even number, label it with +.

I The result is a parsed expression with monotonicity information
explicitly represented.

I Using this we can build a simple Monotonicity Calculus:

[S ...X+...] JX K ⊆ JY K
[S ...Y +...]

[S ...X−...] JY K ⊆ JX K
[S ...Y−...]

I Sánchez-Valencia proved a Soundness Theorem [4]. We may also
have time to prove one in this course.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 27



Sánchez-Valencia’s Natural Logic

Example 1
every �(s/iv+)/n− candidate �n

every candidate �s/iv+
likes �iv/np+ broccoli �np

likes broccoli �iv

every candidate likes broccoli �s

⇓
every �(s/iv+)/n−

+

candidate �n

−
every candidate �s/iv+

+

likes �iv/np+

+

broccoli �np

+

likes broccoli �iv

+

every candidate likes broccoli �s

⇓
every �(s/iv+)/n−

+

candidate �n

−
every candidate �s/iv+

+

likes �iv/np+

+

broccoli �np

+

likes broccoli �iv

+

every candidate likes broccoli �s

+

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 28



Sánchez-Valencia’s Natural Logic

Example 1
I We can thus write this expression as

((every+candidate−)+(likes+broccoli+)+)+

I This means, if we replace ‘candidate’ with something smaller, the
resulting expression is entailed by this one.

I For any of the subexpressions labeled with + (which includes all
others in this example), replacing them with something of the same
type with larger extension preserves validity.

I For instance:

every candidate− likes broccoli Jhopeful candidateK ⊆ JcandidateK
every (hopeful candidate)− likes broccoli

I While:
every candidate likes+ broccoli JlikesK ⊆ JtoleratesK

every candidate tolerates+ broccoli

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 29



Sánchez-Valencia’s Natural Logic

Example 2
For a slightly more interesting example, let us add one word to the
lexicon, without : (n\n+)/np−.

no �(s/iv− )/n−
candidate �n

without �(n\n+)/np− broccoli �np

without broccoli �n\n+

candidate without broccoli �n

no candidate without broccoli �s/iv−
likes �iv/np+ Theo �np

likes Theo �iv

no candidate without broccoli likes Theo �s

⇓

no �(s/iv− )/n−

+

candidate �n

+

without �(n\n+)/np−

+

broccoli �np

−

without broccoli �n\n+

+

candidate without broccoli �n

−

no candidate without broccoli �s/iv−

+

likes �iv/np+

+

Theo �np

+

likes Theo �iv

−
no candidate without broccoli likes Theo �s

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 30



Sánchez-Valencia’s Natural Logic

Example 2

no �(s/iv− )/n−

+

candidate �n

+

without �(n\n+)/np−

+

broccoli �np

−

without broccoli �n\n+

+

candidate without broccoli �n

−

no candidate without broccoli �s/iv−

+

likes �iv/np+

+

Theo �np

+

likes Theo �iv

−
no candidate without broccoli likes Theo �s

⇓

no �(s/iv− )/n−

+

candidate �n

−

without �(n\n+)/np−

−

broccoli �np

+

without broccoli �n\n+

−
candidate without broccoli �n

−

no candidate without broccoli �s/iv−

+

likes �iv/np+

−

Theo �np

−
likes Theo �iv

−
no candidate without broccoli likes Theo �s

+

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 31



Sánchez-Valencia’s Natural Logic

Example 2

I The polarity profile now looks as follows:

((no+(candidate−(without−broccoli+)−)−)+(likes−Theo−)−)+.

I This is reflected in different inference patterns:

no candidate without broccoli likes− Theo JadoresK ⊆ JlikesK
no candidate without broccoli adores− Theo

I While:

no candidate without broccoli+ likes Theo JbroccoliK ⊆ JcabbageK
no candidate without cabbage+ likes Theo

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 32



Sánchez-Valencia’s Natural Logic

Example 3

who �(n\n+)/(s/np)+

Theodore �np

likes �(s\np+)/np+ [np � np]1
(/E )

likes, np � s\np+
(\E )

Theodore likes, np � s
(/I )1

Theodore likes �s/np
(\E )

who Theodore likes �n\n+

⇓

who �(n\n+)/(s/np+)+

+

Theodore �np

+

likes �(s\np+)/np+

+

[np � np]1

+
(/E )

likes, np � s\np+

+
(\E )

Theodore likes, np � s

+
(/I )1

Theodore likes �s/np+

+
(\E )

who Theodore likes �n\n+

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 33



Sánchez-Valencia’s Natural Logic

Example 3

who �(n\n+)/(s/np+)+

+

Theodore �np

+

likes �(s\np+)/np+

+

[np � np]1

+
(/E )

likes, np � s\np+

+
(\E )

Theodore likes, np � s

+
(/I )1

Theodore likes �s/np+

+
(\E )

who Theodore likes �n\n+

⇓

who �(n\n+)/(s/np+)+

+

Theodore �np

+

likes �(s\np+)/np+

+

[np � np]1

+
(/E )

likes, np � s\np+

+
(\E )

Theodore likes, np � s

+
(/I )1

Theodore likes �s/np+

+
(\E )

who Theodore likes �n\n+

+

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 34



van Eijk’s Marking Algorithm

I Recently, Jan van Eijk devised a variation on Sánchez-Valencia’s
algorithm, requiring only a single, “top-down” pass.

I The first step is to change the category markings. Instead of + and
−, we use three functions i , r , and b over M = {+,−, #}, where #
is the uninformative marking:

• i(m) = m for all m ∈ M, i.e. i is identity.
• r(+) = −, r(−) = +, and r(0) = 0, i.e. r is reversal.
• b(m) = 0 for all m ∈ M.

I Our grammar (with a few new items) then becomes:

• Theodore, np
• candidate, n
• every, (s/iv i )/nr

• some, (s/iv i )/ni

• no, (s/iv r )/nr

• broccoli, np
• likes, iv/npi

• who, (n\ni )/iv i

• without, (n\ni )/npr

• most, (s/iv i )/nb

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 35



van Eijk’s Marking Algorithm

The Algorithm

I First, mark each parent node in the derivation tree with the marking
for the argument category of its functional child. I.e., if A has
children A/Bm and B, then A gets marking m.

I Second, from the root up, compute the polarity markings:

• The root is assigned +.
• Having marked node N with m, mark the functional child of N with

m and the argument child with f (m) where f is the category
marking on N.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 36



van Eijk’s Marking Algorithm

Example 2 (again)

no �(s/ivr )/nr

candidate �n

without �(n\ni )/npr broccoli �np

without broccoli �n\ni

candidate without broccoli �n

no candidate without broccoli �s/ivr

likes �iv/npi Theo �np

likes Theo �iv

no candidate without broccoli likes Theo �s

⇓

no �(s/ivr )/nr

candidate �n

without �(n\ni )/npr broccoli �np

without broccoli �n\ni

r

candidate without broccoli �n

i

no candidate without broccoli �s/ivr

r

likes �iv/npi Theo �np

likes Theo �iv

i

no candidate without broccoli likes Theo �s

r

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 37



van Eijk’s Marking Algorithm

Example 2 (again)

no �(s/ivr )/nr

candidate �n

without �(n\ni )/npr broccoli �np

without broccoli �n\ni

r

candidate without broccoli �n

i

no candidate without broccoli �s/ivr

r

likes �iv/npi Theo �np

likes Theo �iv

i

no candidate without broccoli likes Theo �s

r

⇓

no �(s/ivr )/nr

+

candidate �n

−

without �(n\ni )/npr

−

broccoli �np

+

without broccoli �n\ni

−
candidate without broccoli �n

−
no candidate without broccoli �s/ivr

+

likes �iv/npi

−

Theo �np

−
likes Theo �iv

−
no candidate without broccoli likes Theo �s

+

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 38



Summary
I AB categorial grammar can be extended in a number of ways. CCG

is one notable, elegant extension. Lambek Calculus is another.
I Lambek Calculus is motivated by the idea of thinking of syntactic

derivation as logical proof. With this comes a very close
correspondence between syntax and semantics via the Curry-Howard
Correspondence.

I The idea behind the Monotonicity Calculus of van Benthem and
Sánchez-Valencia is to forget about the λ-terms, but inject part of
the semantics into the syntax. In particular monotonicity /
antitonicity information is marked in the category assignments.

I The main workhorse of the Monotonicity Calculus is the polarity
marking algorithm. The result is a marked expression which can be
used to derive monotonicity inferences, based on background
information about relations among subexpressions.

I Thus we have two proof systems working simultaneously: one to
derive grammatical expressions, and one to derive inferential
relations between grammatical expressions.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 39



References

J. van Benthem. Language in Action: Categories, Lambdas and
Dynamic Logic. Studies in Logic 130. Elsevier, Amsterdam, 1991.

R. Bernardi. Reasoning with Polarity in Categorial Type Logics,
Ph.D. Thesis, UiL-OTS, Utrecht University, 2002.

J. van Eijk. ‘Natural Logic for Natural Language’, in B. ten Cate and
H. Zeevat (eds.) 6th International Tbilisi Symposium on Logic,
Language, and Computation, Springer, 2007.

V. Sánchez-Valencia. Studies on Natural Logic and Categorial
Grammar. Ph.D. Thesis, University of Amsterdam, 1991.

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 40


	Categorial Grammar
	Combinatory Categorial Grammar
	Lambek Calculus
	Interlude: Syntax/Semantics Interface
	Sánchez-Valencia's Natural Logic
	van Eijk's Marking Algorithm
	
	References

