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Categorial Grammar

(Ajdukiewicz/Bar-Hillel) Categorial Grammar
Define a set CAT of categories as follows:
I Some set of basic categories is in CAT.
I If A, B ∈ CAT, then both A/B ∈ CAT and A\B ∈ CAT.

Two basic rules:

(FA) A/B, B ⇒ A.

(BA) B, A\B ⇒ A.

If we add to these two more rules we obtain a basic proof system:

(id) A⇒ A.

(cut) If Γ, A, Γ′ ⇒ B and ∆⇒ A, then Γ, ∆, Γ′ ⇒ B.

Here Γ and ∆ are finite sequences of categories.

Definition
CG is the smallest relation containing (id), (FA), and (BA), and closed
under (cut).
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Categorial Grammar

I Given a set Σ of basic lexical items, e.g. natural language
expressions, a lexicon is an assignment of a finite number of
categories to each lexical item:

LEX ⊆ Σ× CAT.

I A string w1, ..., wn ∈ Σ+ is an expression of type B just in case
there is a sequence of categories A1, ..., An such that 〈wi , Ai 〉 ∈
LEX, for each i ≤ n, and A1, ..., An ⇒ B.
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Categorial Grammar

A toy lexicon:

I Theodore, np

I candidate, n

I every, some, (s/(s\np))/n

I broccoli, np

I likes, (s\np)/np

I who, (n\n)/(s\np)

Or, abbreviating iv = s\np and tv = iv/np, this simplifies to:

I Theodore, np

I candidate, n

I every, some, (s/iv)/n

I broccoli, np

I likes, tv

I who, (n\n)/iv

Example:

Theodore
np

likes
(s\np)/np

broccoli
np

s\np
s
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Categorial Grammar

A toy lexicon:

I Theodore, np

I candidate, n

I every, some, (s/(s\np))/n

I broccoli, np

I likes, (s\np)/np

I who, (n\n)/(s\np)

Or, abbreviating iv = s\np and tv = iv/np, this simplifies to:

I Theodore, np

I candidate, n

I every, some, (s/iv)/n

I broccoli, np

I likes, tv

I who, (n\n)/iv

Example:

Theodore
np

likes
tv

broccoli
np

iv
s
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Categorial Grammar

Longer example:

every

(s/iv )/n

candidate
n

who

(n\n)/iv

likes
tv

broccoli
np

iv

n\n
n

s/iv

likes
tv

Theodore
np

iv
s
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Categorial Grammar

CG versus CFG
Theorem (Gaifman)
The class of languages generated by context free grammars coincides
with the class of languages accepted by categorial grammars.

I Recall our lexicon LEX:

• Theodore, np
• candidate, n
• every, some, (s/iv)/n

• broccoli, np
• likes, tv
• who, (n\n)/iv

I A context free grammar generating the same set of strings would be:

S → NP VP

NP → every N | some N | PN | NP who VP

N → candidate

PN → Theodore | broccoli

VP → likes PN
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Categorial Grammar

I Problem: the following are not strings in the language:

• ‘who Theodore likes’
• ‘likes some candidate’

I In particular, we cannot parse:

• ‘Every candidate who Theodore likes likes some candidate’

I For ‘who Theodore likes’ we would need ‘who’ to have category
((n\n)/tv)/np in addition to (n\n)/iv :

who
((n\n)/tv)/np

Theodore
np

(n\n)/tv
likes
tv

n/n
I Similarly, ‘all’ and ‘some’ would have to have a second category

(iv\tv)/n for object position, in addition to (s/iv)/n.

I This is inelegant and seems to miss some cross-categorial
generalizations.
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Combinatory Categorial Grammar

I Combinatory Categorial Grammar (CCG) is an extension of CG with
several further rules. (For more go to Mark Steedman’s course!)

(>B) A/B, B/C ⇒ A/C

(<B) B\C , A\B ⇒ A\C

(>T) A⇒ B/(B\A)

(<T) A⇒ B\(B/A)

I Using >B and >T we can now parse ‘who Theodore likes’:

who
(n\n)/(s/np)

Theodore
np

(>T)
s/(s\np)

likes
(s\np)/np

(>B)
s/np

n\n
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Combinatory Categorial Grammar

I CCG can also capture quantifiers in object position by assigning
‘some’ and ‘all’ an only slightly adjusted category (s\(s/np))/n, in
addition to (s/(s\np))/n for subject position:

Theodore
np

(>T)
s/(s\np)

likes
(s\np)/np

(>B)
s/np

some
(s\(s/np))/n

candidate
n

s\(s/np)
s

I CCG has another rule:

(<Sx ) B/C , (A\B)/C ⇒ A/C

I In general, CCG is stronger than context free, equivalent to so called
linear index grammars (like TAG and other grammatical formalisms).

Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 11



Lambek Calculus

I Lambek Calculus is an alternative to CCG. The main idea is that
categories correspond to logical formulas, and category forming
operators correspond to logical constants. “Parsing as deduction”

I The setting is Gentzen-style Natural Deduction, where Γ � A means
the sequence Γ is of category A.

I The basic Lambek Calculus L is given by the following rules:

(Ax)
A � A

∆ � A/B Γ � B(/E )
∆, Γ � A

Γ � B ∆ � A\B
(\E )

Γ, ∆ � A

∆, B � A(/I )
∆ � A/B

B, ∆ � A (\I )
∆ � A\B
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Lambek Calculus

(Ax)
A � A

∆ � A/B Γ � B(/E )
∆, Γ � A

Γ � B ∆ � A\B
(\E )

Γ, ∆ � A

∆, B � A(/I )
∆ � A/B

B, ∆ � A (\I )
∆ � A\B

I From these follow all of the CCG rules, with the exception of <Sx .

∆ � A/B

Γ � B/C [C � C ]1
(/E )

Γ, C � B (/E )
∆, Γ, C � A

(/I )1
∆, Γ � A/C

I That is, if ∆ is of category A/B and Γ is of category B/C , then
∆, Γ is of category A/C . This is just rule >B.
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Lambek Calculus

(Ax)
A � A

∆ � A/B Γ � B(/E )
∆, Γ � A

Γ � B ∆ � A\B
(\E )

Γ, ∆ � A

∆, B � A(/I )
∆ � A/B

B, ∆ � A (\I )
∆ � A\B

I From these follow all of the CCG rules, with the exception of <Sx .

∆ � A [B\A � B\A]1
(\E )

∆, B\A � B
(/I )1

∆ � B/(B\A)

I That is, if ∆ is of category A, then it is also of category B/(B\A).
This is rule >T.
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Lambek Calculus

I Again, we cannot derive <Sx , which means L is strictly weaker than
CCG.

Theorem (Pentus)
L is context free.

I Still, it allows for elegant derivations without excess categories:

who �(n\n)/(s/np)

Theodore �np

likes �tv [np � np]1
(/E )

likes, np � s\np
(\E )

Theodore likes , np � s
(/I )1

Theodore likes �s/np
(\E )

who Theodore likes �n\n
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Lambek Calculus

I As is well known, in natural language syntax tree structure matters.
We sometimes cannot assume our sequences satisfy associativity.

I The weakest of the Categorial Type Logics is NL:

(Ax)
A � A

∆ � A/B Γ � B(/E )
(∆ ◦ Γ) � A

Γ � B ∆ � A\B
(\E )

(Γ ◦ ∆) � A

(∆ ◦ B) � A
(/I )

∆ � A/B

(B ◦ ∆) � A
(\I )

∆ � A\B
I Adding associativity gives us back L:

Γ[∆1 ◦ (∆2 ◦ ∆3)] � C

Γ[(∆1 ◦ ∆2) ◦ ∆3] � C
I Adding commutativity gives a system called LP:

Γ[(∆1 ◦ ∆2)] � C

Γ[(∆2 ◦ ∆1)] � C
I Clearly, in LP forward and backward slash collapse into a single

binary operator.
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Interlude: Syntax/Semantics Interface

Review of Types

I Recall the simple type system T :

• Basic types, throughout these notes e and t, are in T ;
• If τ, σ ∈ T , then (τ → σ) ∈ T .

I We can define a function type: CAT → T such that:

• type(np) = e ;
• type(s) = t ;
• type(n) = (e → t) ;
• type(A/B) = type(A\B) = (type(B)→ type(A)).
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Interlude: Syntax/Semantics Interface

Review of Lambda Calculus
I We now define the class of λ-terms of type τ, denoted Λτ:

• Variables of type τ are in Λτ.
• Constants of type τ are in Λτ.
• If α ∈ Λτ→σ and β ∈ Λτ, then α(β) ∈ Λσ.
• If x is a variable of type τ and α ∈ Λσ, then λx .α ∈ Λτ→σ.

I β and η reduction rules:
(β) (λxτ.ασ)(βτ) =⇒ ασ[βτ/xτ ], provided xτ is free for βτ in ασ.
(η) λxτ.ατ→σ(xτ) =⇒ ατ→σ, provided xτ is not free in ατ→σ.

I The domain D =
⋃

τ∈T Dτ is given by:
• De is assumed to be fixed set E of entities.
• Dt = {0, 1}.
• Dτ→σ = DDτ

σ .

I A model is a pair M = 〈D, I〉, with D a domain and I : LEX→ D,
so that if type(A) = τ, then I(〈w , A〉) ∈ Dτ.
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Interlude: Syntax/Semantics Interface

I Now grammars must be given by the set of lexical items, their
categories, and corresponding λ-terms.

Theodore np theo

broccoli np broc

candidate n cand

likes (s\np)/np like

who (n\n)/(s\np) λx .λy .λz .x(z) ∧ y(z)
every (s/(s\np))/n λx .λy .∀z(x(z)→ y(z))
some (s/(s\np))/n λx .λy .∃z(x(z) ∧ y(z))

no (s/(s\np))/n λx .λy .¬∃z(x(z) ∧ y(z))

I To use quantifiers in object position we could add:

every (s\(s/np))/n λx .λy .∀z(x(z)→ y(z))
some (s\(s/np))/n λx .λy .∃z(x(z) ∧ y(z))

no (s\(s/np))/n λx .λy .¬∃z(x(z) ∧ y(z))
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Interlude: Syntax/Semantics Interface

I In NL, L, LP and other Categorial Type Logics, because the
syntactic rules are logical rules, semantics comes ‘for free’ from the
Curry-Howard Correspondence between natural deduction proofs in
intuitionistic implicational logic and typed λ-terms.

I Because all these systems are weaker than IIL, we must take a
sublanguage of full λ-calculus. Johan van Benthem proved that the
correspondence holds for this fragment.

I Our rules for NL now become:

(Ax)
x : A � x : A

∆ � t : A/B Γ � u : B(/E )
(∆ ◦ Γ) � t(u) : A

(∆ ◦ x : B) � t : A
(/I )

∆ � λx .t : A/B

Γ � u : B ∆ � t : A\B
(\E )

(Γ ◦ ∆) � t(u) : A

(x : B ◦ ∆) � t : A
(\I )

∆ � λx .t : A\B

I We write NL ` Γ � t : A, and likewise for L and LP.
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Interlude: Syntax/Semantics Interface

Type Raising

Semantically, type-raising corresponds to a certain λ-abstraction.

∆ � t : A [x : B\A � x : B\A]1
(\E )

(∆ ◦ x : B\A) � x(t) : B
(/I )1

∆ � λx .x(t) : B/(B\A)
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Interlude: Syntax/Semantics Interface

Example

who �λx .λy .λz.x(z) ∧ y (z) : (n\n)/(s/np)

Theodore �theo : np

likes �like : tv [w : np � w : np]1
(/E )

likes, w : np � like(w ) : s\np
(\E )

Theodore likes ,w : np � like(theo,w ) : s
(/I )1

Theodore likes �λw .like(theo,w ) : s/np
(\E )

who Theodore likes �λy .λz.like(theo, z) ∧ y (z) : n\n

I We can combine this with ‘candidate’ to form a complex predicate:

NL ` candidate who Theodore likes� λz .like(theo, z)∧cand(z) : n

which is exactly the right result.

I Slogan: “Meaning is a by-product of syntactic derivation.”
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Sánchez-Valencia’s Natural Logic

I The fundamental idea of van Benthem and Sánchez-Valencia’s
Natural Logic is to forget about the λ-terms, shifting a small amount
of the semantics into the syntax, in particular into the categories.

I The crucial features are monotonicity properties of functions.

I Consider the meaning of ‘every’: λx .λy .∀z(x(z)→ y(z)).
As we saw on the first day, this function is antitone in its first
argument, monotone in its second, if we order the domains as usual.

I To capture this, let us write the category of ‘every’ as

(s/(s\np)+)/n−

or abbreviating,
(s/iv+)/n−.

I We can say more generally that A/B+ and A\B+ are categories of
monotone functional items, and A/B− and A\B− of antitone.
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Sánchez-Valencia’s Natural Logic

I The steps of Sánchez-Valencia’s polarity marking algorithm are:

1. Assign lexical items their appropriate marked types.
2. Propagate these markings down the proof tree.
3. The polarity of each node is computed.

I The result is a proof tree with just enough information to support
some basic inferential patterns (stay tuned).

I For Step 1 we might label our lexicon as follows:

• Theodore, np
• candidate, n
• every, (s/iv+)/n−

• some, (s/iv+)/n+

• broccoli, np
• likes, iv/np+

• who, (n\n+)/iv+

• no, (s/iv−)/n−

I When interpreting such terms in models we require terms of
category A/B+ and A\B+ are mapped to monotone functions, and
those of A/B− and A\B− are mapped to antitone functions.
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Sánchez-Valencia’s Natural Logic

Step 2
Where ∗ ∈ {+,−}:
I (/E):

∆ � A/B Γ � B

(∆ ◦ Γ) � A
=⇒

∆ � A/B
+ Γ � B

(∆ ◦ Γ) � A

∆ � A/B∗ Γ � B

(∆ ◦ Γ) � A
=⇒

∆ � A/B∗

+

Γ � B

*

(∆ ◦ Γ) � A
I (/I):

[B � B ]i

...
∆ ◦ B � A
∆ � A/B

=⇒

[B � B ]i

...
∆ ◦ B � A

+
∆ � A/Bm

I m is − (resp. +) if all the nodes on the path from ∆ ◦ B � A to
[B � B ]i are marked, and an odd (resp. even) number are −.
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Sánchez-Valencia’s Natural Logic

Step 2
Where ∗ ∈ {+,−}:
I (\E):

∆ � A\B Γ � B

(Γ ◦ ∆) � A
=⇒

∆ � A\B
+ Γ � B

(Γ ◦ ∆) � A

∆ � A\B∗ Γ � B

(Γ ◦ ∆) � A
=⇒

∆ � A\B∗
+

Γ � B

*

(Γ ◦ ∆) � A
I (\I):

[B � B ]i

...
B ◦ ∆ � A
∆ � A\B

=⇒

[B � B ]i

...
B ◦ ∆ � A

+

∆ � A\Bm

I m is − (resp. +) if all the nodes on the path from ∆ ◦ B � A to
[B � B ]i are marked, and an odd (resp. even) number are −.
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Sánchez-Valencia’s Natural Logic

Step 3
I The final step is quite simple:

1. Mark the root node with +.
2. Starting at the leaf nodes, check whether every node along the path

to the root is marked.
3. If it is, and there are an odd number of nodes marked −, label the

node with −. If there are an even number, label it with +.

I The result is a parsed expression with monotonicity information
explicitly represented.

I Using this we can build a simple Monotonicity Calculus:

[S ...X+...] JX K ⊆ JY K
[S ...Y +...]

[S ...X−...] JY K ⊆ JX K
[S ...Y−...]

I Sánchez-Valencia proved a Soundness Theorem [4]. We may also
have time to prove one in this course.
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Sánchez-Valencia’s Natural Logic

Example 1
every �(s/iv+)/n− candidate �n

every candidate �s/iv+
likes �iv/np+ broccoli �np

likes broccoli �iv

every candidate likes broccoli �s

⇓
every �(s/iv+)/n−

+

candidate �n

−
every candidate �s/iv+

+

likes �iv/np+

+

broccoli �np

+

likes broccoli �iv

+

every candidate likes broccoli �s

⇓
every �(s/iv+)/n−

+

candidate �n

−
every candidate �s/iv+

+

likes �iv/np+

+

broccoli �np

+

likes broccoli �iv

+

every candidate likes broccoli �s

+
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Sánchez-Valencia’s Natural Logic

Example 1
I We can thus write this expression as

((every+candidate−)+(likes+broccoli+)+)+

I This means, if we replace ‘candidate’ with something smaller, the
resulting expression is entailed by this one.

I For any of the subexpressions labeled with + (which includes all
others in this example), replacing them with something of the same
type with larger extension preserves validity.

I For instance:

every candidate− likes broccoli Jhopeful candidateK ⊆ JcandidateK
every (hopeful candidate)− likes broccoli

I While:
every candidate likes+ broccoli JlikesK ⊆ JtoleratesK

every candidate tolerates+ broccoli
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Sánchez-Valencia’s Natural Logic

Example 2
For a slightly more interesting example, let us add one word to the
lexicon, without : (n\n+)/np−.

no �(s/iv− )/n−
candidate �n

without �(n\n+)/np− broccoli �np

without broccoli �n\n+

candidate without broccoli �n

no candidate without broccoli �s/iv−
likes �iv/np+ Theo �np

likes Theo �iv

no candidate without broccoli likes Theo �s

⇓

no �(s/iv− )/n−

+

candidate �n

+

without �(n\n+)/np−

+

broccoli �np

−

without broccoli �n\n+

+

candidate without broccoli �n

−

no candidate without broccoli �s/iv−

+

likes �iv/np+

+

Theo �np

+

likes Theo �iv

−
no candidate without broccoli likes Theo �s
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Sánchez-Valencia’s Natural Logic

Example 2

no �(s/iv− )/n−

+

candidate �n

+

without �(n\n+)/np−

+

broccoli �np

−

without broccoli �n\n+

+

candidate without broccoli �n

−

no candidate without broccoli �s/iv−

+

likes �iv/np+

+

Theo �np

+

likes Theo �iv

−
no candidate without broccoli likes Theo �s

⇓

no �(s/iv− )/n−

+

candidate �n

−

without �(n\n+)/np−

−

broccoli �np

+

without broccoli �n\n+

−
candidate without broccoli �n

−

no candidate without broccoli �s/iv−

+

likes �iv/np+

−

Theo �np

−
likes Theo �iv

−
no candidate without broccoli likes Theo �s

+
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Sánchez-Valencia’s Natural Logic

Example 2

I The polarity profile now looks as follows:

((no+(candidate−(without−broccoli+)−)−)+(likes−Theo−)−)+.

I This is reflected in different inference patterns:

no candidate without broccoli likes− Theo JadoresK ⊆ JlikesK
no candidate without broccoli adores− Theo

I While:

no candidate without broccoli+ likes Theo JbroccoliK ⊆ JcabbageK
no candidate without cabbage+ likes Theo
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Sánchez-Valencia’s Natural Logic

Example 3

who �(n\n+)/(s/np)+

Theodore �np

likes �(s\np+)/np+ [np � np]1
(/E )

likes, np � s\np+
(\E )

Theodore likes, np � s
(/I )1

Theodore likes �s/np
(\E )

who Theodore likes �n\n+

⇓

who �(n\n+)/(s/np+)+

+

Theodore �np

+

likes �(s\np+)/np+

+

[np � np]1

+
(/E )

likes, np � s\np+

+
(\E )

Theodore likes, np � s

+
(/I )1

Theodore likes �s/np+

+
(\E )

who Theodore likes �n\n+
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Sánchez-Valencia’s Natural Logic

Example 3

who �(n\n+)/(s/np+)+

+

Theodore �np

+

likes �(s\np+)/np+

+

[np � np]1

+
(/E )

likes, np � s\np+

+
(\E )

Theodore likes, np � s

+
(/I )1

Theodore likes �s/np+

+
(\E )

who Theodore likes �n\n+

⇓

who �(n\n+)/(s/np+)+

+

Theodore �np

+

likes �(s\np+)/np+

+

[np � np]1

+
(/E )

likes, np � s\np+

+
(\E )

Theodore likes, np � s

+
(/I )1

Theodore likes �s/np+

+
(\E )

who Theodore likes �n\n+

+
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van Eijk’s Marking Algorithm

I Recently, Jan van Eijk devised a variation on Sánchez-Valencia’s
algorithm, requiring only a single, “top-down” pass.

I The first step is to change the category markings. Instead of + and
−, we use three functions i , r , and b over M = {+,−, #}, where #
is the uninformative marking:

• i(m) = m for all m ∈ M, i.e. i is identity.
• r(+) = −, r(−) = +, and r(0) = 0, i.e. r is reversal.
• b(m) = 0 for all m ∈ M.

I Our grammar (with a few new items) then becomes:

• Theodore, np
• candidate, n
• every, (s/iv i )/nr

• some, (s/iv i )/ni

• no, (s/iv r )/nr

• broccoli, np
• likes, iv/npi

• who, (n\ni )/iv i

• without, (n\ni )/npr

• most, (s/iv i )/nb
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van Eijk’s Marking Algorithm

The Algorithm

I First, mark each parent node in the derivation tree with the marking
for the argument category of its functional child. I.e., if A has
children A/Bm and B, then A gets marking m.

I Second, from the root up, compute the polarity markings:

• The root is assigned +.
• Having marked node N with m, mark the functional child of N with

m and the argument child with f (m) where f is the category
marking on N.
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van Eijk’s Marking Algorithm

Example 2 (again)

no �(s/ivr )/nr

candidate �n

without �(n\ni )/npr broccoli �np

without broccoli �n\ni

candidate without broccoli �n

no candidate without broccoli �s/ivr

likes �iv/npi Theo �np

likes Theo �iv

no candidate without broccoli likes Theo �s

⇓

no �(s/ivr )/nr

candidate �n

without �(n\ni )/npr broccoli �np

without broccoli �n\ni

r

candidate without broccoli �n

i

no candidate without broccoli �s/ivr

r

likes �iv/npi Theo �np

likes Theo �iv

i

no candidate without broccoli likes Theo �s

r
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van Eijk’s Marking Algorithm

Example 2 (again)

no �(s/ivr )/nr

candidate �n

without �(n\ni )/npr broccoli �np

without broccoli �n\ni

r

candidate without broccoli �n

i

no candidate without broccoli �s/ivr

r

likes �iv/npi Theo �np

likes Theo �iv

i

no candidate without broccoli likes Theo �s

r

⇓

no �(s/ivr )/nr

+

candidate �n

−

without �(n\ni )/npr

−

broccoli �np

+

without broccoli �n\ni

−
candidate without broccoli �n

−
no candidate without broccoli �s/ivr

+

likes �iv/npi

−

Theo �np

−
likes Theo �iv

−
no candidate without broccoli likes Theo �s

+
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Summary
I AB categorial grammar can be extended in a number of ways. CCG

is one notable, elegant extension. Lambek Calculus is another.
I Lambek Calculus is motivated by the idea of thinking of syntactic

derivation as logical proof. With this comes a very close
correspondence between syntax and semantics via the Curry-Howard
Correspondence.

I The idea behind the Monotonicity Calculus of van Benthem and
Sánchez-Valencia is to forget about the λ-terms, but inject part of
the semantics into the syntax. In particular monotonicity /
antitonicity information is marked in the category assignments.

I The main workhorse of the Monotonicity Calculus is the polarity
marking algorithm. The result is a marked expression which can be
used to derive monotonicity inferences, based on background
information about relations among subexpressions.

I Thus we have two proof systems working simultaneously: one to
derive grammatical expressions, and one to derive inferential
relations between grammatical expressions.
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