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Motivation

I This is a course mostly about logical systems designed for, and
inspired by, inference in natural language.

I One of the central themes will be that much of the logic of ordinary
language can be captured by appealing only to “surface level”
features of words and phrases.

I What do we mean by “logic of ordinary language”, and what do we
mean by “surface level”?
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Motivation

On What Follows from What
I By “logic of ordinary language” we mean what Aristotle had in mind:

“A deduction is a form of words (logos) in which, certain things
having been supposed, something different from those supposed
results of necessity because of their being so.”
(Prior Analytics I.2, 24b18-20)

I Basic question: When does one statement follow from another?

I Better: How can we tell when one statement follows from another?
• How in fact do we, humans, determine whether a statement follows?
• How could we program a computer to determine this (correctly)?
• What, even in principle, determines whether a statement follows?

I There seem to be cases where these three subquestions call for
different answers. Nonetheless, it is difficult to separate them in
theory. This will be a recurring theme.
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Motivation

Surface Information
I “Surface level” reasoning could refer to any number of things:

simple, easy, shallow, superficial, tractable, observable, and so on.

I While some of these elements will be present, we mean something
more specific.

I We will conceive of languages, whether natural and artificial, as sets
of symbolic structures, built up from atomic elements by simple rules
of combination. Our rules of inference will only be allowed to operate
on these symbols: they must operate on the basis of form alone.

I Thus, apart from basic relations between symbols, we will be
ignoring “deeper” levels of meaning, and we will ignore what might
be called “pragmatics” altogether. One might say, we are interested
in inferential relations supported directly, or merely, by grammar.

I What is often called natural logic is broader than surface reasoning.
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Motivation

Motivating Example
I Consider the following sentence (this example is inspired by [4]):

Most Americans who know a foreign language speak it at home

I Under what conditions is this sentence true? Is it equivalent to:
• Most Americans who know a foreign language speak at least one of

the foreign languages they know at home?
• Most Americans who know a foreign language speak all the foreign

languages they know at home?
• Most Americans who know a foreign language speak most of the

foreign languages they know at home?

I By contrast, the following pattern is patently valid:

Most Americans who know a foreign language speak it at home

Most Americans who know a foreign language speak it at home or at work

I How can this be so easy when assessing truth conditions is so hard?
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Motivation

I One obvious suggestion is that it has something to do with
recognizing a generally valid rule, roughly to the effect that:

Most X Y Y ⇒ Z
Most X Z

I The precise psychological question of how this could work, or
whether the underlying psychological mechanism has anything at all
to do with such a rule, seems to be open, though at various points,
including today, we will discuss some intriguing preliminary work.

I Most of this course will be about logical systems that are designed
for this kind of “top-down” deductive strategy. The goal is at least
to get a good sense for what information is already there, “on the
surface”, to be used for inference. This will be illustrated with many
concrete examples.

I Much of this work has found applications in computational natural
language understanding, and we will discuss some of that as well.
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Course Outline
1. The plan for the rest of today is as follows:

1.1 Monotonicity
1.2 Monotonicity and Syllogisms
1.3 Monotonicity in Processing

2. Next, we will delve into the literature on logic-based grammars and
grammar-based logics, and discuss several concrete examples:
2.1 Categorial Grammar and Lambek Calculus
2.2 Van Benthem and Sánchez-Valencia’s Monotonicity Calculus
2.3 Zamansky et al.’s Order Calculus

3. Then we will dedicate at least one session to negative polarity items
and logical systems meant to capture NPI distribution.

4. After that, we will look at inferences that go beyond monotonicity,
considering exclusion and other basic relations.
4.1 Extension of Monotonicity Calculus with exclusion relations
4.2 Another connection to NPIs
4.3 MacCartney’s NatLog system for RTE

5. Finally, if there is time, we may discuss some similar ideas that have
been pursued in the tradition of Quine’s Predicate Functor Logic.
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Some intriguing aspects of surface reasoning we will not cover include:

I Many entailments follow from grammar or form alone, but have
seemingly little to do with logic. Consider phenomena related to the
dative alternation (see Levin and Rappaport, among others).
• Penelope taught Clive archery ⇒ Penelope taught archery to Clive
• Penelope taught Clive archery ⇒ Clive learned archery
• Penelope taught archery to Clive ; Penelope taught Clive archery
• Penelope taught archery to Clive ; Clive learned archery

One could well imagine developing, axiomatizing, and so on,
grammar-based logical systems of the sort we will see, with features
that license exactly the right inferences. (C.f. [7].)

I One could also imagine surface reasoning systems that focus more
on logical words like ‘and’, ‘or’, and so on, as l.u.b. and g.l.b.
operators. A number of central entailment relations follow from
these properties. This has been explored by a number of researchers
(among them Muskens, Zamansky et al., many in proof-theoretic
semantics, etc.), but we will not focus on that work here.
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Monotonicity

I The inference pattern we saw above with ‘most’ is an example of a
monotonicity inference. The general form is as follows:

S [X ] X ⇒ Y
(mono)

S [Y ]
The quantifier ‘most’ is said to be monotonic in its second
argument, because it supports such an inference.

I By contrast, some quantifiers are antitonic, because they support
the opposite inference:

S [X ] Y ⇒ X
(anti)

S [Y ]

I For instance, ‘all’ is antitonic in its first argument:

All sunflowers need sun
All Rostov sunflowers need sun
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Monotonicity

I In fact every quantifier has a monotonicity profile, depending on the
monotonicity properties of its argument places:

↓every↑
↑some↑
↓no↓

↑not every↓
*most↑
*few↓

*exactly n*
↑at least n ↑
↓at most n ↓

Here, * means non-monotone in that it supports neither “upward”
nor “downward” inferences in general.

I These feature are not restricted to quantifiers. Any “functional”
expression – verbs, sentential operators, adverbs, adjectives, etc. –
can be monotone, antitone, or non-monotone.

I For instance, ‘doubt’ is antitone, whereas ‘believe’ is monotone:

He doubted he would win
He doubted he would win by 20

He believed he would win by 20

He believed he would win
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Monotonicity

I This all becomes particularly interesting when we embed
monotone/antitone expressions inside others. For instance:

No one doubted he would win by at least 20

No one doubted he would win

I Here the inference gets reversed because we have an antitone
context from ‘doubted’ inside another antitone context from ‘no’.
This creates a monotone context.

I In general, if we think of antitonic as “negative”, −, and monotonic
as “positive”, +, then their composition behaves likes negative and
positive numbers under multiplication:

· + −
+ + −
− − +

I This can in principle be repeated any number of times.
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Monotonicity

Type Domains
I Recall the standard set T of types, as the smallest set such that:

• Basic types e, t ∈ T .
• If σ, τ ∈ T , then σ→ τ ∈ T .

I Functional expressions can now be identified as those expressions
assigned to functional types. For instance, quantifiers are typically
said to be of type (e → t)→ ((e → t)→ t).

I Recall the standard model of type domains D =
⋃

τ∈T Dτ given by:

• De is assumed to be some fixed set E of entities.
• Dt = {0, 1}.
• Dτ→σ = DDτ

σ .

Functional types are so called as they are interpreted as functions.

I (N.B. In what follows we borrow liberally from work by Moss [5].)
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Monotonicity

Ordered Type Domains
I Notice that Dt = {0, 1} is not just a set. It has a simple, natural

preordering defined on it: 0 ≤t 1.

I We could say that De = E has an preordering as well, namely the
flat ordering, for which every element is ≤e to itself, and nothing
else is ≤e to anything else.

I The crucial observation for understanding monotonicity is that
functional type domains inherit an order from their argument types
(specifically, from that of the co-domain), so these orderings get
propagated all the way up the type hierarchy.

I For functions f , g ∈ Dσ→τ we have:

f ≤σ→τ g , if and only if f (a) ≤τ g(a) for all a ∈ Dσ.

I For predicates this recovers the usual ordering by inclusion.
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Monotonicity

I Now conceiving of type domains as pairs Dτ = (Dτ,≤τ), we can
say formally what it is for a function to be monotone or antitone.

Definition (Monotonicity)
Given preorders A = (A,≤A) and B = (B,≤B ), a function f : A→ B
is monotone just in case, for all a ∈ A:

a ≤A a′ =⇒ f (a) ≤B f (a′).

It is antitone just in case, for all a ∈ A:

a ≤A a′ =⇒ f (a′) ≤B f (a).

It is non-monotone if it is neither monotone nor antitone.

I Note that the antitone functions from A to B coincide with the
monotone functions from A to Bop = (B,≥B ). This will become
useful in a later lecture.
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Monotonicity

Examples: Sentential Connectives

I Sentential ‘not’ is antitone. It is the function f¬ of type t → t such
that f¬(0) = 1 and f¬(1) = 0. That is, v ≤ w ⇒ f¬(w) ≤ f¬(v).

I Sentential ‘or’ on the other hand is a monotone function f∨ of type
t → (t → t). There are four functions of type t → t:

0 < id, f¬ < 1.

f∨ sends 0 to id and 1 to 1, hence it is monotone.

I Likewise, f∧ sends 0 to 0 and 1 to id, so it is also monotone.

I f→, the material conditional, is antitone since,

f→(1) = id < 1 = f→(0).
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Monotonicity

Currying
I Given preorders A and B, we can also consider the product preorder

A×B, for which (a, b) ≤A×B (a′, b′) if a ≤A a′ and b ≤B b′.

I Then it is easy to see that:

{f : A→ (B → C )} = {f : A× B → C}.

Moreover, if we use [A, B] to denote the set of monotone functions
from A to B, then we also have:

[A, [B, C]] = [A×B, C].

I We can say a function f : A× B → C is monotone in its second
argument if for all a ∈ A, f (a, · ) is a monotone from B to C.

I We can give an analogous definition for monotone in its first
argument, or indeed monotone in its nth argument for any n.
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Monotonicity

Back to Quantifiers

I The meaning of any quantifier Q is a function

q : (E → 2)→ ((E → 2)→ 2),

or more familiarly,

q : P(E )→ (P(E )→ 2),

and yet more familiarly, in its curried form,

q : P(E )×P(E )→ 2.

I It is in this sense that ‘every’ is antitone in its first argument and
monotone in its second, that ‘no’ is antitone in both arguments,
‘some’ is monotone in both, and so on.
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Monotonicity

Why Monotonicity?
I Monotonicity principles, as we have seen, are applicable all the way

up the type-hierarchy, and they are not particular to any single
grammatical category.

I Moreover, there is evidence that such features are in some sense
“grammaticalized”, a topic we will return to when discussing
negative polarity items.

I We will eventually consider features that go beyond monotonicity in
interesting ways, but we will first see how much one can already get
from these simple, basic principles.

I There are many fundamental inferential principles that one cannot
derive from monotonicity. For instance, it does not even give us
symmetry of sentential ‘and’: from ‘A and B’, derive ‘B and A’. An
obvious question is, for a given logical system, how far does
monotonicity bring us, and how much further do we need to go?
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Monotonicity and Syllogisms

I We can answer this question precisely for the case of the classical
syllogism, based on work by van Eijk [2] and Geurts [3].

I First note that the geometry of our monotonicity profile
characterizations of the four main quantifiers is captured nicely in
the traditional Square of Opposition:

↓All↑

↑Some↑

↓No↓

↑Not All↓

I As van Eijk has shown, every valid syllogism can be derived by
exactly one application of monotonicity and at most one application
of each of the following rules for each premise or conclusion:

Q A B
(sym)

Q B A
All A B(import)

Some A B
No A B

Not All A B
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Monotonicity and Syllogisms

I For instance, barbara is just a single application of monotonicity:

All A B All B C (mono)
All A C

I A more interesting example is fesapo:

No C B(sym)
No B C

All B A (import)
Some B A (sym)
Some A B (mon)

Some A C
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Monotonicity and Syllogisms

I Over the past several years there has been some very interesting
work in extended syllogistic logics, most notably by Larry Moss and
Ian Pratt-Hartmann. A reasonable question is how the systems we
will discuss fit in with that work.

I In general, modern work on syllogistics assumes a restricted syntax
and axiomatizes this restricted language over standard models.
Often these fragments are small enough to be decidable, and one of
the interesting questions is where the line between decidability and
undecidability lies.

I In the logical systems we will consider, from the Monotonicity
Calculus on, we typically assume unrestricted syntax, but the proof
rules never have to be complete for the standard model. The proof
rules only pick up on selected semantic features.

I The next theorem suggests some further important differences.
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Monotonicity and Syllogisms

Theorem (van Benthem [1]; Westerst̊ahl [8])
Suppose a quantifier Q is conservative, quantitative, and has extension.
Then Q = every if the following rules are valid:

Q A B Q B A
A = B Q A A .

If Q shows variety, then Q = every if it satisfies the following:

Q A B Q B C
Q A C Q A A .

Under the same conditions, Q = some if it satisfies the following rules:

Q A B
Q B A

Q A B
Q A A

.
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Monotonicity in Processing

I The last topic for this lecture is a paper by Bart Guerts [3],
suggesting that these monotonicity features, and related properties,
may play some important role in processing of quantifiers.

I The first relevant point, attributed to Oaksford and Chater, is that
the following two inference patterns are equally difficult for subjects,
despite the difference in logical complexity between ‘all’ and ‘most’:

All A are B All B are C
All A are C

Most A are B All B are C
Most A are C

I However, the main goal of the paper is to capture certain trends and
phenomena identified in an influential meta-analysis of syllogistic
reasoning by Chater and Oaksford.

Thomas Icard: Surface Reasoning, Lecture 1: Reasoning with Monotonicity 23



Monotonicity in Processing

Recall the figures in the classical syllogism:

I Figure 1:

Q B C Q A B
Q A C

I Figure 2:

Q C B Q A B
Q A C

I Figure 3:

Q B C Q B A
Q A C

I Figure 4:

Q C B Q B A
Q A C
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Monotonicity in Processing
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Monotonicity in Processing

Important trends:

I People are not bad at syllogisms. They endorse valid syllogisms on
average 51% of the time and invalid syllogisms 11% of the time.

I Many errors seem to arise from illicit conversion, e.g. AAnA, n 6= 1.

I Geurts is interested in explaining the discrepancies among
endorsements of the valid syllogisms. Why are some more difficult
than others? Compare, e.g. IA4I and EI4O.
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Monotonicity in Processing

I Geurts proposes a very simplistic processing model, making use of
the rules we have seen so far.

I In addition to monotonicity, he considers a rule which was implicit in
van Eijk’s axiomatization of the syllogism:

No A B(N)
All A B

I The proposal is that an abstract reasoner begins a problem with 100
units, and each additional complexity subtracts from this “budget”:

1. For each use of the monotonicity rule subtract 20 units.
2. For each use of (N) subtract 10 units.
3. Each time an O-proposition appears in a proof subtract 10 units.

I The intuition behind rule 3 is that the alternative grammatical
structure requires some extra processing.

I N.B. In van Eijk’s formulation of the syllogism, we would begin with 80,

rule 1 would be superfluous, and rule 2 would be changed to subtract 10

when the monotonicity inference is based on an E-proposition assumption.
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Monotonicity in Processing

I The correlation between Geurt’s model and Chater and Oaksford’s
meta-data is surprisingly good (r = 0.93):

I These are all the valid syllogisms, where the numbers represent
Geurts’ scores, with Chater and Oaksford’s percentage scores in
parentheses.
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Summary

I Monotonicity is a central and pervasive feature of “natural
reasoning”. For this reason, and because it is well understood from
a logical point of view, we are taking it as our starting point.

I Monotonicity based reasoning is “close to the surface” in the sense
that it does not require full interpretation of the sentences involved.

I On Wednesday we will also see that it is closely linked with
important syntactic, or grammatical, phenomena.

I Next time we will look at concrete logical systems, starting from the
“parsing as deduction” tradition in formal grammar. This will
culminate in a concrete deductive system for monotonicity reasoning.
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