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What we did yesterday...

• We talked about boxes and diamonds, and showed that they were like
little animals, or automata, exploring graphs from the inside. Modal
logics are local, internal.

• We talked about decidability, bisimulations, the first-order
correspondence language, and the van Benthem Correspondence
Theorem, and concluded that modal logic was beautiful. . .

• But orthodox modal logic can’t refer to the worlds, times, intervals,
states, or whatever it is that the nodes in Kripke models are taken to be!

• We solved this by introducing nominals—propositional symbols i , j , k
constrained in their interpretation symbols to be true at a unique world in
any model. We also introduced it the @-operator.

• We showed that our new hybrid tools both dealt with the expressive
shortcomings and had inherited modal beauty. And, by lifting the van
Benthem Characterization Theorem to cover them, we concluded that we
were still doing honest-to-goodness, down-home, good-’ol modal logic....
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Hybrid deduction

Let’s continue with an example-driven introduction to hybrid
deduction. We concentrate on tableau systems. We shall:

• Discuss the goals and problems of orthodox modal deduction.

• Present a hybrid tableau system for reasoning about arbitrary
models.

• Show how this can be extended to hybrid tableau systems for
special classes of models.

• Round off by discussing further themes in hybrid deduction,
including their implementation.



Different models, different logics

Key fact about modal logic: when you work with different kinds of
models (graphs) the logic typically changes. For example:

• 2p ∧2q→ 2(p ∧ q) is valid on all models: it’s part of the
basic, universally applicable, logic.

• But 33p→ 3p is only valid on transitive graphs. It’s not
part of the basic logic, rather it’s part of the special (stronger)
logic that we need to use when working with transitive models.



Modal deduction should be general

• Quite rightly, modal logicians have insisted on developing
proof methods which are general — that is, which can be
easily adapted to cope with the logics of many kinds of
models (transitive, reflexive, symmetric, dense, and so on).

• They achieve this goal by making use of Hilbert-style systems
(that is, axiomatic systems).

• There is a basic axiomatic systems (called K) for dealing with
arbitrary models.

• To deal with special classes of models, further axioms are
added to K. For example, adding 33p→ 3p as an axiom
gives us the logic of transitive frames.



Generality clashes with easy of use

• Unfortunately, Hilbert systems are hard to use and completely
unsuitable for computational implementation.

• For ease of use we want (say) natural deduction systems or
tableau systems. For computational implementation we want
(say) resolution systems or tableau systems.

• But it is hard to develop tableau, or natural deduction, or
resolution in a general way in orthodox modal logic.

• Why is this?



Getting behind the diamonds

• The difficulty is extracting information from under the scope
of diamonds.

• That is, given 3ϕ, how do we lay hands on ϕ? And given
¬2ϕ (that is, 3¬ϕ), how do we lay hands on ¬ϕ?

• In first order logic, the analogous problem is trivial. There is a
simple rule for stripping away existential quantifiers: from ∃xϕ
we conclude ϕ[x ← a] for some brand new constant a (this
rule is usually called Existential Elimination).

• But in orthodox modal logic there is no simple way of
stripping off the diamonds.



Hybrid deduction

• Hybrid deduction is based on a simple observation: it’s easy
to get at the information under the scope of diamonds — for
there is an natural way of stripping the diamonds away.

• We shall explore this idea in the setting of tableau — but it
can (and has been) used in a variety of proof styles, including
resolution and natural deduction.

• Moreover, once the tableau system for reasoning about
arbitrary models has been defined, it is straightforward to
extend it to to cover the logics of special classes of models.
That is, hybridization enables us to achieve the traditional
modal goal of generality without resorting to Hilbert-systems.



Moreover. . .

Hybrid reasoning is arguably quite natural.

In what follows we shall sometimes give an informal proof before
we give the tableau proof. As we shall see, our tableau proofs
mimic the informal reasoning fairly closely.



Hip and cute

Consider the following statement:

If everyone you hate is hip, and someone you hate is
cute, then someone you hate is both hip and cute.

We can represent it as follows:

[hate] hip ∧ 〈hate〉 cute→ 〈hate〉 (hip ∧ cute)

This is a valid statement, and it’s validity is easy to establish
informally. . .



Informal argument

• Suppose “If everyone you hate is hip, and someone you hate is
cute, then someone you hate is both hip and cute” is not true.

• Then everyone you hate is hip, and someone you hate is cute.
However no one you hate is both hip and cute.

• So there is someone that you hate—let’s call him Jim—who is
cute.

• But as Jim is someone you hate, he will be hip as well as cute
(for everyone you hate is hip).

• But Jim can’t be both hip and cute (for no one you hate is
both hip and cute). Contradiction!. So the original statement
was true after all.
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[hate] hip ∧ 〈hate〉 cute→ 〈hate〉 (hip ∧ cute)

1 ¬@i ([hate] hip ∧ 〈hate〉 cute → 〈hate〉 (hip ∧ cute))
2 @i ([hate]hip ∧ 〈hate〉 cute)
2′ ¬@i 〈hate〉 (hip ∧ cute)
3 @i [hate]hip
3′ @i 〈hate〉 cute
4 @i 〈hate〉 jim
4′ @jimcute
5 @jimhip
6 ¬@jim(hip ∧ cute)
7 ¬@jimhip ¬@jimcute

⊥5,7 ⊥4′,7
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Internalizing Labelled Deduction

¬ rules
@i¬ϕ
¬@iϕ

¬@i¬ϕ
@iϕ

∧ rules

@i (ϕ ∧ ψ)

@iϕ
@iψ

¬@i (ϕ ∧ ψ)

¬@iϕ ¬@iψ

@ rules
@i@jϕ

@jϕ

¬@i@jϕ

¬@jϕ
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Extracting information from modal contexts

In the statement of these rules we write j to indicate a nominal
new to the branch where the rule is being applied.

3 rules
@i 〈r〉ϕ
@i 〈r〉 j

¬@i 〈r〉ϕ @i 〈r〉 k
¬@kϕ

@jϕ

2 rules
@i [r]ϕ @i 〈r〉 k

@kϕ
¬@i [r]ϕ
@i 〈r〉 j
¬@jϕ
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Link with first-order deduction (Live Version)

Hybrid Logic First Order Logic

@i3φ

∃y(Riy ∧ STy (φ))

@i3j
@jφ

Rij ∧ STj(φ)
Rij
STj(φ)
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Link with first-order deduction (Studio Version)

• The hybrid rule from @i3ϕ conclude @i3j and @jϕ is
essentially the first-order rule of Existential Elimination (from
∃xϕ conclude ϕ[x ← j ]).

• Recall that (via the Standard Translation) we know that 3ϕ
is shorthand for ∃y(Riy ∧ sty (ϕ)).

• Applying Existential Elimination to this yields Rij ∧ stj(ϕ).
But this is just @i3j ∧ @jϕ, the output of the tableau rule.

• In short, nominals give us exactly the grip we need on the
bound variables hidden by modal notation. They give us the
benefits of first-order techniques in a decidable logic.



Equality rules

But more rules are needed. Why? Nothing we have said so far gets
to grips with fact that nominals have an intrinsic logic. Nominals
give us a modal theory of equality, and we need to get to deal with
this. Here’s one way of doing this:

(i occurs on branch)

@i i

@i j @iϕ

@jϕ

@i3j @jk

@i3k



(3p ∧3¬p)→ (2(q→ i)→ 3¬q)

1 ¬@i ((3p ∧3¬p)→ (2(q→ i)→ 3¬q))
2 @i (3p ∧3¬p)
2′ ¬@i (2(q→ i)→ 3¬q) Propositional rule on 1
3 @i3p
3′ @i3¬p Propositional rule on 2
4 @i3j
4′ @jp 3 rule on 3
5 @i3k
5′ @k¬p 3 rule on 3’
6 @i2(q→ i)
6′ ¬@i3¬q Propositional rule on 2’
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The proof continued. . .

4 @i3j
4′ @jp
5 @i3k
5′ @k¬p
6 @i2(q→ i)
6′ ¬@i3¬q

7 @jq ¬3 rule on 4 and 6’, then ¬@ rule
8 @j(q→ i) 2 rule on 4 and 6
9 ¬@jq @j i Propositional rule on 7 and 8
⊥7,9
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Reasoning over other classes of models

• Our tableau system deals (correctly and completely) with
reasoning over arbitrary models, that is, models where we
have made no special assumptions about the underlying
relations. For some applications this is sufficient.

• But (as we said at the start of the lecture) in many
applications we are interested in models where the relations
interpreting the modalities have special properties, such as
symmetry, transitivity, irreflexivity, density, discreteness,
antisymmetry, determinism, and so on. We need to find a way
of coping with such frame conditions in hybrid logic.

• Our basic tableau system can easily be extended to cope with
them, thus meeting the traditional modal goal of generality.
We’ll look at two examples.



Nice neighbours

Consider the following statement:

If you have a neighbour who only has nice neighbours,
then you are nice.

We can represent it as follows:

〈neighbour〉 [neighbour]nice→ nice

This is true no matter how the adjective “nice” is interpreted. Its
truth hinges on the fact that neighbourhood is a symmetric
relation.



Informal Argument

• Suppose 〈neighbour〉 [neighbour]nice→ nice is false of
you.

• Then 〈neighbour〉 [neighbour]nice is true of you, but nice
is false of you (that is, you are not nice).

• Then you have a neighbour (let’s call him Julio) who only has
nice neighbours (that is, [neighbour]nice is true of Julio).

• But neighbourhood is a symmetric relation, hence you are one
of Julio’s neighbours.

• But all Julio’s neighbours are nice — so you must be nice too.
Contradiction!

• So 〈neighbour〉 [neighbour]nice→ nice must true of you
after all.

But can we mimic this argument using our existing tableau
system? Let’s try. . .
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〈neighbour〉 [neighbour] nice→ nice

1 ¬@i (〈neighbour〉 [neighbour]nice→ nice)
2 @i 〈neighbour〉 [neighbour] nice
2′ ¬@inice Propositional rule on 1
3 @i 〈neighbour〉 julio
3′ @julio[neighbour]nice 3 rule on 2

Now we are blocked. There is no way to close this branch.
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1 ¬@i (〈neighbour〉 [neighbour]nice→ nice)
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2 @i 〈neighbour〉 [neighbour] nice
2′ ¬@inice Propositional rule on 1
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Now we are blocked. There is no way to close this branch.



But there is an easy solution

Add the following rule when working with symmetric relations:

@i 〈neighbour〉 j

@j〈neighbour〉 i

(Here i and j are any nominals on the branch we are working on).
This rule is a direct expression of symmetry, and with its help we
can finish off our proof.



〈neighbour〉 [neighbour] nice→ nice

1 i@julio(〈neighbour〉 [neighbour] nice→ nice)
2 @i 〈neighbour〉 [neighbour] nice
2′ ¬@inice Propositional rule on 1
3 @i 〈neighbour〉 julio
3′ @julio[neighbour]nice 3 rule on 2

4 @julio〈neighbour〉 i Symmetry rule on 3
5 @inice 2 rule on 3’ and 4
⊥2′,5
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5 @inice 2 rule on 3’ and 4
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〈neighbour〉 [neighbour] nice→ nice
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Loop-free time

Consider the following statement:

If time i precedes time j, then time j does not precede
time i.

We can represent the statement as follows (where 〈f〉 is the
Priorean diamond meaning “sometime-in-the-future”):

@i 〈f〉 j → ¬@j〈f〉 i

If you accept that temporal precedence is both transitive and
irreflexive (the usual assumption) then this is a valid statement.



Informal Argument

• Suppose that “if i precedes time j, then time j does not
precede time i” is false.

• Then time i precedes time j, but time j precedes time i too.

• But temporal flow is transitive, so time i precedes time i.

• But temporal precedence is irreflexive, so time i cannot
precede time i.

• From this contradiction we conclude that our original
statement was true after all.
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But can we prove @i〈f〉 j → ¬@j〈f〉 i using our existing
tableau system? Let’s try. . .

1 ¬@k(@i 〈f〉 j → ¬@j〈f〉 i)
2 @k@i 〈f〉 j
2′ ¬@k¬@j〈f〉 i) Propositional rule on 1
3 @i 〈f〉 j @ rule on 2
4 @j〈f〉 i ¬@¬ rule on 2’

Now we are blocked. There is no way to close this branch.
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But there is an easy solution

Add the following rules when working with irreflexive and transitive
relations:

@i¬〈f〉 i
@i 〈f〉 j @j〈f〉 k

@i 〈f〉 k

(Here i , j and k can be any nominals on the branch we are working
on).
These rules are a direct expression of irreflexivity and transitivity,
and with their help we can finish off our proof.
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2′ ¬@k¬@j〈f〉 i) Propositional rule on 1
3 @i 〈f〉 j @ rule on 2
4 @j〈f〉 i ¬@¬ rule on 2’

5 @i 〈f〉 i Transitivity rule on 3 and 4
6 ¬@i 〈f〉 i Irreflexivity rule
⊥5,6
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Pure formulas

• It’s time to be more precise about what completeness results
are possible here.

• To do this we need to think about pure formulas.

• A formula of the basic hybrid language is pure if it contains
no propositional variables. That is, the only atoms in pure
formulas are nominals (and > and ⊥ if we have them in the
language).

• We’ll first discuss what we can say about frames using pure
formulas, and then we’ll state a general result about how they
can help us in hybrid deduction.



Frame definability (I)

A formula defines a class of frames if it is valid on precisely the
frames belonging to that class class. We can define many
important classes of frames using pure formulas:

@i3i Reflexivity

@i3j → @j3i Symmetry

@i3j ∧ @j3k → @i3k Transitivity



Frame definability (II)

These previous three examples are also definable using orthodox
modal language. But pure formulas can also define frame classes
which are not definable in orthodox modal logic:

@i¬3i Irreflexivity

@i3j → @j¬3i Asymmetry

@i2(3i → i) Antisymmetry

@j3i ∨ @j i ∨ @i3j Trichotomy



From formulas to tableau rules

Let @iϕ be a pure formula, built out of nominals i , i1, . . . , in. Then
the simplest (though not always the smartest!) way of turning this
formula into a tableau rule is as follows:

(j , j1, . . . , jn on branch)

@iϕ[i ← j , i1 ← j1, . . . , in ← jn]

This rule simply says: for any branch B of the tableau you are
building, you are free to instantiate @iϕ with nominals occurring
on B and add the resulting formula to the end of B.



Frame definability and deduction match for pure formulas

Completeness Theorem Suppose you extend the basic tableau
system with the tableau rules for the pure formulas @jϕ, . . . , @kψ
(that is, the rules of the form just described). Then the resulting
system is (sound and) complete with respect to the class of frames
defined by these formulas.

That is, the frame-defining and deductive powers of pure formulas
match perfectly for pure formulas.

Two comments should be made about this result. . .



We can use any pure formula

At first glance, it seems that this completeness result only covers
pure formulas of the form @iϕ. But many interesting pure formulas
are not of this form. For example symmetry: @i3j → @j3i .

Note, however, that for any pure formula ϕ, and any nominals i , ϕ
and @iϕ define exactly the same class of frames.

For example symmetry can be defined by @k(@i3j → @j3i).

So our completeness theorem is fully general: it covers all classes
of frames definable by a pure formulas.



But we can often be smarter

Suppose we want a complete system for symmetry. We could do
this by adding the rule suggested by the previous system:

@k(@i3j → @j3i)
.

But in the nice neighbours example we used the following rule
instead:

@i3j

@j3i

This rule is smarter: it saves us having to use tableau rules to get
rid of the outermost @k , and then break down the implication.



Slightly more generally

Given a pure formula of the form

(@iϕ1 ∧ · · · ∧ @jϕn)→ (@kϕn+1 ∨ · · · ∨ @lϕn+m)

we can turn it into the tableau rule

@iϕ1, . . . ,@jϕn

@kϕn+1 | · · · | @lϕn+m

without losing completeness.



Further themes in hybrid deduction

To conclude, let’s briefly address the following questions:

• Why are general completeness proof easy to come by in hybrid
logic?

• Can we really adapt these ideas to other proof styles?

• Is any of this stuff implementable?



Why are general completeness proofs
so easy to come by in hybrid logic?

• Essentially because the basic hybrid logic enables us to use
first-order techniques to build models.

• For example, when proving completeness for hybrid Hilbert
systems, it’s not necessary to use modal-style canonical
models — you can build what are basically first-order Henkin
models.

• And for tableau completeness proofs, observe that the tableau
rules crunch formulas down into expressions of the form
(¬)@ip, (¬)@i j and (¬)@i3j . Open branches are thus
Robinson diagrams of satisfying models.



Named models are important

• Moreover, the models we build in this way are named. (A
named model is a model in which every point is named by
some nominal.)

• A simple model theoretic argument shows that if all instances
of a pure formula ϕ are true at all states in a named model,
then the underlying frame validates φ. This gives us
completeness for any extension by pure axioms.



Can we really adapt these ideas to other proof styles?

Yes. The key insight is that the combination of nominals and @
allow us to extract information from behind the scope of diamonds.

This idea has been successfully applied to define general sequent
calculi (Seligman), natural deduction systems (Seligman, Braüner),
and resolution calculi (Areces), and display calculi (Demri and
Goré).

Let’s take a quick look at the way Torben Braüner handles natural
deduction in hybrid logic.



Some basic natural deduction rules

[@iϕ]
···

@iψ
(→ I )

@i (ϕ→ ψ)

@i (ϕ→ ψ) @iϕ
(→ E )

@iψ

@iϕ
(@I )

@k@iϕ

@k@iϕ
(@E )

@iϕ



Natural deduction rules for modalities

[@i3j ]
···

@jϕ
(2I )∗

@i2ϕ

@i2ϕ @i3k
(2E )

@kϕ

∗ j does not occur in @i2ϕ or in any undischarged assumptions
other than the specified occurrences of @i3j .



An example: 2(ϕ→ ψ)→ (2ϕ→ 2ψ)

[@i2(ϕ→ ψ)]3 [@i3j ]1

(2E )
@j(ϕ→ ψ)

[@i2ϕ]2 [@i3j ]1

(2E )
@jϕ

(→ E )
@jψ

(2I )1
@i2ψ

(→ I )2
@i (2ϕ→ 2ψ)

(→ I )3
@i (2(ϕ→ ψ)→ (2ϕ→ 2ψ))



Is any of this stuff implementable?

Yes — but we need to be careful. For example, the equality rules
discussed today are nice for hand calculation, but naive
computationally.

The HTab system (Areces and Hoffmann) implements more
sophisticated rules (due to Bolander and Blackburn) which
guarantee termination. The system is optimised in several ways,
and is a competitive prover.

Though not as fast as the more recent Spartacus prover (Smolka
and Kaminski).



And then there’s resolution

A significant development is the adaptation of the resolution
method for hybrid logic (Areces) and the implementation of the
HyLoRes prover (Areces, Goŕın, and Heguiabehere).

Strictly speaking, the method is resolution, plus a little
paramodulation to handle the equality reasoning. The hybrid
resolution rule is significantly simpler than other known approaches
to modal resolution — @ and nominals allow us to pull resolvents
out of the scope of modalities.

Many first-order resolution optimization techniques transfer to
hybrid logic, and Areces and Gorin have incorporated such
improvements into HyLoRes.



Summing up . . .

• Orthodox modal logic demands proof methods that are
applicable to a wide range to of logics. But because it is hard
to extract information from under the scope of diamonds it
has been forced to rely on Hilbert-systems, thereby sacrificing
ease-of-use.

• The new tools offered by the basic hybrid language (nominals
and @) enable us to define usable proof systems, such as
tableau and natural deduction, basically because they make it
easy to pull information out of modal scope.

• These proof methods can be generalized to a wide range of
logics (completeness is automatic for pure formulas). Mature
implementations now exist.


